(Created page with " == Abstract == International audience; In this work, we investigate the use of OpenStreetMap data for semantic labeling of Earth Observation images. Deep neural networks hav...") |
m (Scipediacontent moved page Draft Content 294203133 to Audebert et al 2017a) |
(No difference)
|
International audience; In this work, we investigate the use of OpenStreetMap data for semantic labeling of Earth Observation images. Deep neural networks have been used in the past for remote sensing data classification from various sensors, including multispectral, hyperspectral, SAR and LiDAR data. While OpenStreetMap has already been used as ground truth data for training such networks, this abundant data source remains rarely exploited as an input information layer. In this paper, we study different use cases and deep network architectures to leverage OpenStreetMap data for semantic labeling of aerial and satellite images. Especially , we look into fusion based architectures and coarse-to-fine segmentation to include the OpenStreetMap layer into multispectral-based deep fully convolutional networks. We illustrate how these methods can be successfully used on two public datasets: ISPRS Potsdam and DFC2017. We show that OpenStreetMap data can efficiently be integrated into the vision-based deep learning models and that it significantly improves both the accuracy performance and the convergence speed of the networks.
The different versions of the original document can be found in:
Published on 01/01/2017
Volume 2017, 2017
DOI: 10.1109/cvprw.2017.199
Licence: CC BY-NC-SA license
Are you one of the authors of this document?