(Created page with " == Abstract == International audience; In Functional Data Analysis, the underlying structure of a raw observation is functional and data are assumed to be sample paths from...") |
m (Scipediacontent moved page Draft Content 142623125 to Nicol 2017a) |
(No difference)
|
International audience; In Functional Data Analysis, the underlying structure of a raw observation is functional and data are assumed to be sample paths from a single stochastic process. When data considered are functional in nature thus infinite-dimensional, like curves or images, the multivariate statistical procedures have to be generalized to the infinite-dimensional case. By approximating random functions by a finite number of random score vectors, the Principal Component Analysis approach appears as a dimension reduction technique and offers a visual tool to assess the dominant modes of variation, pattern of interest, clusters in the data and outlier detection. A functional statistics approach is applied to univariate and multivariate aircraft trajectories.
The different versions of the original document can be found in:
Published on 01/01/2017
Volume 2017, 2017
Licence: CC BY-NC-SA license
Are you one of the authors of this document?