(Created page with " == Abstract == Traffic congestions present a major challenge in large cities. Consid- ering the distributed, self-interested nature oftraffic we tackle congestions using mul...")
 
m (Scipediacontent moved page Draft Content 819675286 to Silva et al 2019b)
 
(No difference)

Latest revision as of 21:48, 28 January 2021

Abstract

Traffic congestions present a major challenge in large cities. Consid- ering the distributed, self-interested nature oftraffic we tackle congestions using multiagent reinforcement learning (MARL). In this thesis, we advance the state- of-the-art by delivering the first MARL convergence guarantees in congestion- like problems. We introduce an algorithm through which drivers can learn opti- mal routes by locally estimating the regret associated with their decisions, which we prove to converge to an equilibrium. In order to mitigate the effects ofselfish- ness, we also devise a decentralised tolling scheme, which we prove to minimise traffic congestion levels. Our theoretical results are supported by an extensive empirical evaluation on realistic traffic networks. 1.


Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.5753/ctd.2019.6332
https://academic.microsoft.com/#/detail/2888285943
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.5753/ctd.2019.6332
Licence: CC BY-NC-SA license

Document Score

0

Views 2
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?