(Created page with " == Abstract == The approach to gas pipeline risk and integrity management in the US, involving the development of integrity management plans for High Consequence Areas (HCA)...") |
m (Scipediacontent moved page Draft Content 783743998 to Haswell Goodfellow 2006a) |
(No difference)
|
The approach to gas pipeline risk and integrity management in the US, involving the development of integrity management plans for High Consequence Areas (HCA), is usually qualitative, as outlined in ASME B31.8S. Depending on the engineering judgement of the assessment team this can lead to a wide variety of results making risk comparison between pipelines difficult. Qualitative risk ranking methods are popular in Europe, but quantitative risk assessment (QRA) is also used for setting acceptable risk levels and as an input to risk and integrity management planning. It is possible to use quantitative risk assessment methods to compare the levels of risk inherent in different pipeline design codes. This paper discusses the use of pipeline quantitative risk assessment methods to analyse pipelines designed to ASME B31.8 and UK IGE/TD/1 (equivalent to PD 8010, published by BSI, for the design of gas pipelines) codes. The QRA utilises predictive models for consequence assessment, e.g. pipeline blowdown and thermal radiation effects, and failure frequency, in determining the risk levels due to an operational pipeline. The results of the analysis illustrate how the risk levels inherent in the two codes compare for different class locations & minimum housing separation distances. The impact of code requirements on design factor, depth of burial, population density and the impact of third party activity on overall risk levels are also discussed.Copyright © 2006 by ASME
The different versions of the original document can be found in:
Published on 01/01/2006
Volume 2006, 2006
DOI: 10.1115/ipc2006-10507
Licence: CC BY-NC-SA license
Are you one of the authors of this document?