(Created page with " == Abstract == International audience; Vision systems provide a large functional spectrum for perception applications and, in recent years, they have demonstrated to be esse...")
 
m (Scipediacontent moved page Draft Content 361248662 to Wang et al 2014d)
 
(No difference)

Latest revision as of 17:36, 28 January 2021

Abstract

International audience; Vision systems provide a large functional spectrum for perception applications and, in recent years, they have demonstrated to be essential in the development of Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles. In this context, this paper presents an on-road objects detection ap-proach improved by our previous work in defining the traffic area and new strategy in obstacle extraction from U-disparity.Then, a modified particle filtering is proposed for multiple object tracking . The perception strategy of the proposed vision-only detection system is structured as follows : First, a method based on illuminant invariant image is employed at an early stage for free road space detection. A convex hull is then constructed to generate a region of interest (ROI) which includes the main traffic road area. Based on this ROI, an U-disparity map is built to characterize on-road obstacles. In this approach, connected regions extraction is applied for obstacles detection instead of standard Hough Transform. Finally, a modified particle filter framework is employed for multiple targets tracking based on the former detection results. Besides, multiple cues, such as obstacle's size verification and combination of redundant detections, are em-bedded in the system to improve its accuracy. Our experimental findings demonstrates that the system is effective and reliable when applied on different traffic video sequences from a public database.


Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1109/icarcv.2014.7064455
https://hal.archives-ouvertes.fr/hal-01095618/document,
https://hal.archives-ouvertes.fr/hal-01095618,
https://ieeexplore.ieee.org/document/7064455,
https://academic.microsoft.com/#/detail/2051017000
https://hal.archives-ouvertes.fr/hal-01095618/document,
https://hal.archives-ouvertes.fr/hal-01095618/file/Multiple_Obstacle_Detection_and_Tracking_using_Stereo_Vision_Application_Analysis.pdf
https://hal.archives-ouvertes.fr/hal-01098783/document,
https://hal.archives-ouvertes.fr/hal-01098783/file/P0513.pdf
Back to Top

Document information

Published on 01/01/2014

Volume 2014, 2014
DOI: 10.1109/icarcv.2014.7064455
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?