(Created page with " == Abstract == The Paris Agreement was formed in 2015 to reduce the environmental impact and limit the increase in temperature to 2°C compared to pre-industrial levels. It...")
 
m (Scipediacontent moved page Draft Content 922573387 to Svensson Dahlin 2019a)
 
(No difference)

Latest revision as of 18:05, 26 January 2021

Abstract

The Paris Agreement was formed in 2015 to reduce the environmental impact and limit the increase in temperature to 2°C compared to pre-industrial levels. It is believed that an electrification of the transport sector will reduce its negative environmental impact. To reach the goals set by the Paris Agreement we are in need of quick development towards an electrified fleet of vehicles. Despite this urgency electric vehicles (EVs) have failed to reach the majority of the market, instead it has stuck in the chasm between the early adopters and the early majority of the markets. This is due to three main challenges; EVs are relatively expensive compared to conventional petrol- and diesel-powered vehicles, EVs have an inadequate driving range, and the access to a functional charging infrastructure is limited. This thesis focuses on the third challenge regarding charging infrastructure. The charging infrastructure is dependent on the existing electricity distribution infrastructure, i.e. the grid. It is rather time-consuming and costly to strengthen the grid, which is deemed necessary for enabling a roll-out of a charging infrastructure that meets the needs of current and near-future EV operators. This research provides an alternative way of approaching the issues. Instead of strengthening the grid by digging up old cables it looks into the opportunities of incorporating stationary battery storages as a buffer between the EV charging stations and the grid connection point. This battery solution can reduce the power outtake and smoothen out the load from EV charging, thus limiting the impact of EV charging from a grid perspective. The research assesses what type of pathways this solution could follow to successfully drive the adoption of EVs. Furthermore, the study tries to understand how these solutions could be designed to deliver the necessary values regarding EV charging and reducing the overall power outtake from grid connection points. The thesis is carried out by analyzing collected quantitative and qualitative data through the lens of three main theories. These are transition theory, theory on eco-innovations, and theory on the diffusion of innovations. The thesis finds that the two pathways for a battery supported charging infrastructure that will be most efficient in speeding up the adoption rate of EVs is within a workplace and public charging setting in city and urban environments. For both pathways it is expected that a centralized concept, with one battery solution connected to several charging points, will be most feasible in the short-term, which is important as the need for developments are very urgent. The workplace charging will provide 3,6 kW AC-charging while the public charging provides 150 kW DC-charging. The solution is expected to be cost-efficient for specific locations, especially for public charging in city environments with strained grid infrastructures. The study provides an initial assessment for the city of Stockholm which indicates that the power outtake can be reduced by 63,5–112,2 MW in 2030. This means that the current grid infrastructure could support a larger number of EVs, thus reducing the greenhouse-gas emissions from the transport sector and bringing us closer to reaching the goals set by the Paris Agreement. Parisavtalet utformades år 2015 för att reducera vår klimatpåverkan och begränsa temperaturökningen till 2°C jämfört med nivåerna som rådde innan den industriella revolutionen. Förhoppningen är att en elektrifiering av transportsektorn kan reducera dess negativa klimatpåverkan. För att nå målen i Parisavtalet behövs en snabb omställning mot en elektrifiering av fordonsflottan. Trots situationens brådskande karaktär har elbilar fastnat i en klyfta mellan den begränsade tidiga marknaden och den sena marknaden, vilken utgör majoriteten av kunderna. Det finns tre primära anledningar till detta; elbilar är dyra jämfört med bensin- och dieseldrivna bilar, räckvidden för elbilar är otillräcklig, och det råder begränsad tillgång till en funktionell laddinfrastruktur. Den här studien fokuserar på den tredje anledningen kring otillräcklig laddinfrastruktur. Laddinfrastrukturen är beroende av det existerande elnätet och dess distributionskapacitet. En förstärkning av elnätet är i många fall nödvändig för att möjliggöra en utrullning av en laddinfrastruktur som möter dagens och morgondagens behov. Istället för att förstärka elnätet genom att gräva ner tjockare kablar så fokuserar denna studie på en alternativ lösning kring laddinfrastruktur sammankopplat med stationära batterilager. Batterilagret agerar som en buffert mellan anslutningspunkten till elnätet och laddningspunkten för elbilar. Genom att reducera effektuttaget och jämna ut lastkurvan för elbilsladdning kan en batterilösning begränsa den negativa påverkan det förväntas ha på elnätet. Studien undersöker vilka vägar denna batterilösning kan ta för att öka antalet elbilar i fordonsflottan. Efter att ha förstått vilka dessa lösningsvägar är så analyserar studien hur dessa lösningar kan vara uppbyggda för att erbjuda de efterfrågade och nödvändiga värdena för elbilsladdning och elnätets fortsatta funktionalitet. Studien bygger på analys av kvalitativa och kvantitativa data. Analysen utförs genom att applicera koncept hämtade från teorier kring teknologiska övergångar, miljöinnovationer och spridning av innovationer. De två lösningsområden som förväntas vara mest effektiva i att driva en ökning av antalet elbilar i Sverige är arbetsplatsladdning samt offentlig laddning i stadsmiljöer. En lösning med ett centraliserat batterisystem där en batterilösning är kopplat till flera laddstationer antas vara mest genomförbar på kort sikt, vilket anses vara centralt på grund av utmaningarnas brådskande karaktär. För arbetsplatsladdning tillhandahålls 3,6 kW AC-laddning och för offentlig laddning tillhandahålls 150 kW DC-laddning. Lösningarna förväntas vara kostnadseffektiva for specifika platser och användarprofiler, speciellt för offentlig laddning i stadsområden med ansträngda elnät. En initial uppskattning visar att en laddinfrastruktur kopplat till stationära batterilager inom de två lösningsområdena kan minska Stockholms effektuttag för elbilsladdning med 63,5–112,2 MW år 2030. Detta betyder att dagens elnät kan tillgodose ett ökat antal elbilar, vilka genererar färre utsläpp av växthusgaser och ger oss en bättre chans att nå Parisavtalets mål.


Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?