(Created page with " == Abstract == uthor(s): Oldenburg, Curtis M.; Birkholzer, Jens T. | Abstract: The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the Calif...")
 
m (Scipediacontent moved page Draft Content 212723700 to Birkholzer Oldenburg 2016a)
 
(No difference)

Latest revision as of 19:19, 25 January 2021

Abstract

uthor(s): Oldenburg, Curtis M.; Birkholzer, Jens T. | Abstract: The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of CO2 (e.g., due to leakage to the atmosphere from geologic CO2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) allow quantification of stored CO2, and (4) offer defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO2-enhanced oil recovery (CO2-EOR), CO2 injection into depleted gas reservoirs (with or without CO2-enhanced gas recovery (CO2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO2 and methane (CH4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, pipeline transport, etc.) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO2 and CH4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO2 injection project (CO2-EOR, CO2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.


Original document

The different versions of the original document can be found in:

https://www.scipedia.com/public/Oldenburg_Birkholzer_2014a,
https://www.osti.gov/scitech/servlets/purl/1339969,
https://academic.microsoft.com/#/detail/2611889637
Back to Top

Document information

Published on 01/01/2016

Volume 2016, 2016
DOI: 10.2172/1339969
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?