(Created page with " == Abstract == International audience; Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchica...") |
m (Scipediacontent moved page Draft Content 766056083 to Rozenblat et al 2013a) |
(No difference)
|
International audience; Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of "cohesion", which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).
The different versions of the original document can be found in:
Published on 01/01/2013
Volume 2013, 2013
DOI: 10.1007/978-94-007-6677-8_9
Licence: Other
Are you one of the authors of this document?