(Created page with "==1 Title, abstract and keywords== Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviation...")
 
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
==1 Title, abstract and keywords==
+
==ABSTRACT==
  
Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
This presentation shows part of the work done within the project ‘Advanced Numerical Simulation and Performance Evaluation of WAM-V ® in Spray Generating Conditions’ developed by the International Center for Numerical Methods in Engineering (CIMNE) under Navy Grant N62909-12-1-7101 issued by the Office of Naval Research Global.
  
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
One of the primary goals of that project was the development of a computational model for simulation of the Wave Adaptive Modular Vessel (WAM-V®) under spray generating conditions.
  
An abstract is required for every document; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
+
For this purpose, a Semi-Lagrangian Particle Finite Element Method (SL-PFEM) has been applied. This is the latest development within the framework of the so-called Particle Finite Element Method (PFEM), using the X-IVAS (eXplicit Integration along the Velocity and Acceleration Streamlines) scheme.
  
==2 The main text==
+
In this presentation we demonstrate the applicability of the SL-PFEM using the X-IVAS scheme for the simulation of the Wave Adaptive Modular Vehicle under spray generating conditions.
  
You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
==PRESENTATION==
 +
This presentation was held at the 31st Symposium on Naval Hydrodynamics on September 11-16th, 2016.
  
Most of the documents in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific publications in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
[[File:Draft_García-Espinosa_273512028_2274_31st SNH.jpg|link=https://prezi.com/9sof5thvm2z5]]
  
===2.1 Subsections===
+
==ACKNOWLEDGEMENTS ==
  
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
+
This study was partially supported by the WAM-V project funded under the Navy Grant N62909-12-1-7101 issued by Office of Naval Research Global, the SAFECON project (ref. 267521, FP7-IDEAS-ERC), the FORECAST project (ref. 664910, H2020-ERC-2014-PoC) and the X-SHEAKS project (ref. ENE2014-59194-C2-1-R). The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.
  
===2.2 General guidelines===
+
Permission to use the image shown in Figure 2 has been granted by Prof. Mehdi Ahmadian, VirginiaTech, USA. This image has appeared earlier in Andrew William Peterson’s Ph.D. thesis (2014), figure 3.12, page 55.
  
Some general guidelines that should be followed in your manuscripts are:
+
==REFERENCES==
  
:*  Avoid hyphenation at the end of a line.
+
Becker, P., Idelsohn, S.R., Oñate, E.: A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Computational Mechanics, Vol. 55, Issue 6, June 2015, pp. 1091-1104. DOI 10.1007/s00466-014-1107-0.
  
:*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
+
Becker, P. An enhanced Particle Finite Element Method with special emphasis on landslides and debris flows. Ph.D. thesis, Barcelona Tech (2015).
  
:*  Use decimal points (not commas); use a space for thousands (10 000 and above).
+
Celledoni, E., Kometa, B.K., Verdier, O.: High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations. Journal of Scientific Computing, Vol. 66, Issue 1, Jan. 2016, pp. 91-115. DOI 10.1007/s10915-015-0015-6
  
:*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
+
Courant, R., Friedrichs, K., Lewy, H.: On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, Vol. 11, No. 2, 1967, pp. 215–234. DOI 10.1147/rd.112.0215.
  
===2.3 Tables, figures, lists and equations===
+
Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics Vol. 5, No. 3, 1952, pp. 243–255. DOI 10.1002/cpa.3160050303.
  
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text (<span id='cite-_Ref382560620'></span>[[#_Ref382560620|table 1]], table 2, etc.) and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
+
Dadvand, P., Rossi, R., Oñate, E.: An Object-Oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications. Archives of Computational Methods in Engineering, Vol. 17, No. 3, 2010, pp. 253–297. DOI 10.1007/s11831-010-9045-2.
  
<span id='_Ref382560620'></span>
+
Dupont, T.F., Liu, Y.: Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics, Vol. 190, No. 1, 2003, pp. 311–324. DOI 10.1016/S0021-9991(03)00276-6.
{| style="margin: 1em auto 1em auto;border: 1pt solid black;border-collapse: collapse;"
+
|-
+
| style="text-align: center;"|Thickness
+
| style="text-align: center;"|3.175 mm
+
|-
+
| style="text-align: center;"|Young Modulus
+
| style="text-align: center;"|12.74 MPa
+
|-
+
| style="text-align: center;"|Poisson coefficient
+
| style="text-align: center;"|0.25
+
|-
+
| style="text-align: center;"|Density
+
| style="text-align: center;"|1107 kg/m<sup>3</sup>
+
|}
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Table 1: Material properties</span></div>
+
  
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
+
Dupont, T.F., Liu, Y.: Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations. Mathematics of Computation. Vol. 76, No. 258, 2007, pp. 647–669. DOI 10.1090/S0025-5718-06-01898-9.
  
<span id='_Ref448852946'></span>
+
Evans, M.W., Harlow, F.H.: “The Particle-in-Cell Method for Hydrodynamic Calculations”. LA-2139 Nov. 1957, Los Alamos National Laboratory, Los Alamos, New Mexico.
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
[[Image:Scipedia.gif|center|480px]]
+
</div>
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Figure 1. Scipedia logo.</span></div>
+
  
Number the figures according to their sequence in the text (<span id='cite-_Ref448852946'></span>[[#_Ref448852946|figure 1]], figure 2, etc.). Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
+
García-Espinosa, J., Oñate, E., Serván-Camas, B., Nadukandi, P. and Becker, P.A. “Advanced Numerical Simulation and Performance Evaluation of WAM-V ® in Spray Generating Conditions. Final Report. Navy Grant N62909-12-1-7101.” July 2015. CIMNE, Barcelona, Spain.
  
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
+
Gelet, R.M., Nguyen, G., Rognon, P.: Modelling interaction of incompressible fluids and deformable particles with the Material Point Method. In: The 6th International Conference on Computational Methods (ICCM2015) (2015)
  
1. The first entry in this list
+
García-Espinosa, J., Onate, E.: An unstructured finite element solver for ship hydrodynamics problems. Journal of Applied Mechanics Vol. 70, No. 1, 2003, pp. 18-26.
  
2. The second entry
+
Harlow, F.H.: Hydrodynamic Problems Involving Large Fluid Distortions. Journal of the ACM, Vol. 4, No 2, 1957, pp. 137–142. DOI 10.1145/ 320868.320871.
  
2.1. A subentry
+
Idelsohn, S.R., Marti, J., Becker, P., Oñate, E.: Analysis of multifluid flows with large time steps using the particle finite element method. International Journal for Numerical Methods in Fluids, Vol. 75, No 9, 2014, pp. 621–644.
  
3. The last entry
+
Idelsohn, S.R., Nigro, N., Limache, A., Oñate, E.: Large time-step explicit integration method for solving problems with dominant convection. Computer Methods in Applied Mechanics and Engineering No. 217-220, 2012, pp. 168–185. DOI 10.1016/j.cma.2011.12.008.
  
* A bulleted list item
+
Idelsohn, S.R., Nigro, N.M., Gimenez, J.M., Rossi, R., Marti, J.M.: A fast and accurate method to solve the incompressible Navier-Stokes equations. Engineering Computations Vol. 30, No. 2, 2013, pp. 197–222. DOI 10.1108/02644401311304854.
  
* Another one
+
Idelsohn, S.R., Oñate, E., Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with freesurfaces and breaking waves. International Journal for Numerical Methods in Engineering, Vol. 61, No. 7, 2004, pp. 964–989. DOI 10.1002/nme.1096.
  
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. <span id='cite-_Ref424030152'></span>[[#_Ref424030152|(1)]].
+
Idelsohn, S.R., Oñate, E., Nigro, N., Becker, P., Gimenez, J.: Lagrangian versus Eulerian integration errors. Computer Methods in Applied Mechanics and Engineering Vol. 293, 2015, pp. 191–206. DOI 10.1016/j.cma.2015.04.003.
  
{| style="width: 100%;"
+
MacCormack, R.W.: The Effect of Viscosity in Hypervelocity Impact Cratering. Journal of Spacecraft and Rockets Vol. 40, No. 5, 2003, pp. 757–763. DOI 10.2514/2.6901.
|-
+
| style="vertical-align: top;"| <math>{\nabla }^{2}\phi =0</math>
+
| style="text-align: right;"|<span id='_Ref424030152'></span>
+
(1)
+
|}
+
  
===2.4 Supplementary material===
+
Min, C., Gibou, F.: A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids. Journal of Computational Physics 219(2), 912–929 (2006). DOI 10.1016/j.jcp.2006.07.
  
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file.
+
Nadukandi, P.: Numerically stable formulas for a particle-based explicit exponential integrator. Computational Mechanics, Vol. 55, No. 5, 2015, pp. 903–920. DOI 10.1007/s00466-015-1142-5.
  
==3 Bibliography==
+
Nadukandi, P., Serván-Camas, B., Becker, P.A. and García-Espinosa, J., Seakeeping with the semi-Lagrangian Particle Finite Element Method. Published online in Computational Particle Mechanics (2016). DOI 10.1007/s40571-016-0127-2
  
<span id='_Ref449344604'></span>
+
Nielson, G.M., Jung, I.H.: Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE Transactions on Visualization and Computer Graphics, Vol. 5, No. 4, 1999, pp. 360–372. DOI 10.1109/2945.817352.
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the document is [<span id='cite-1'></span>[[#1|1]]], the second [<span id='cite-2'></span>[[#2|2]]], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen (e.g. [<span id='cite-1'></span>[[#1|1]], <span id='cite-3'></span>[[#3|3]]] or [<span id='cite-2'></span>[[#2|2]]-<span id='cite-2'></span>[[#4|4]]]).
+
  
<span id='_Ref449084254'></span>
+
Onate, E., García-Espinosa, J., Idelsohn, S. R. “Ships Hydrodynamics”. In Stein, de Borst and Hughes (eds.), Encyclopedia of computational mechanics. John Wiley & Sons, 2004. DOI: 10.1002/ 0470091355.ecm070
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to documents published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [<span id='cite-1'></span>[[#1|1]]], other publication articles [<span id='cite-2'></span>[[#2|2]]], books [<span id='cite-3'></span>[[#3|3]]], book chapter [<span id='cite-4'></span>[[#4|4]]], conference proceedings [<span id='cite-5'></span>[[#5|5]]], and online documents [<span id='cite-6'></span>[[#6|6]]], shown in references section below.
+
  
==4 Acknowledgments==
+
Peterson, A.W.: Simulation and Testing ofWave-Adaptive Modular Vessels. Ph.D. thesis, Virginia Polytechnic Institute and State University (2014).
  
Acknowledgments should be inserted at the end of the document, before the references section.
+
Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean, Vol. 19, No. 1, 1981, pp. 35-46. DOI 10.1080/07055900.1981.9649098.
  
==5 References==
+
Sawyer, J.S.: A semi-Lagrangian method of solving the vorticity advection equation. Tellus, Vol. 15, No. 4, 1963, pp. 336–342. DOI 10.1111/j.2153-3490.1963.tb01396.x.
  
<span id='_Ref449083719'></span>
+
Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An Unconditionally Stable MacCormack Method. Journal of Scientific Computing. Vol. 35, No. 2-3, 2008, pp. 350–371. DOI 10.1007/s10915-007-9166-4.
<div id="1"></div>
+
[[#cite-1|[1]]] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Article code. Available: [http://www.scipedia.com/ucode. http://www.scipedia.com/ucode.]
+
  
<div id="2"></div>
+
Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Computer Physics Communications. Vol. 87, No. 1-2, 1995, pp. 236–252. DOI 10.1016/0010-4655(94)00170-7.
[[#cite-2|[2]]] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Volume number, first page-last page.
+
  
<div id="3"></div>
+
WAM-V: The Wave Adaptive Modular Vessel. URL [http://www.wam-v.com http://www.wam-v.com]
[[#cite-3|[3]]] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
  
<div id="4"></div>
+
Zhang, D.Z., Zou, Q.,VanderHeyden,W.B., Ma, X.: Material point method applied to multiphase flows. Journal of Computational Physics, Vol. 227, No. 6, 2008, pp. 3159–3173. DOI 10.1016/ j.jcp.2007.11.021.
[[#cite-4|[4]]] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
 
+
<div id="5"></div>
+
[[#cite-5|[5]]] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
 
+
<div id="6"></div>
+
[[#cite-6|[6]]] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: [http://www.scipedia.com/document.pdf http://www.scipedia.com/document.pdf]. [Accessed day, month and year].
+

Latest revision as of 18:14, 14 January 2021

ABSTRACT

This presentation shows part of the work done within the project ‘Advanced Numerical Simulation and Performance Evaluation of WAM-V ® in Spray Generating Conditions’ developed by the International Center for Numerical Methods in Engineering (CIMNE) under Navy Grant N62909-12-1-7101 issued by the Office of Naval Research Global.

One of the primary goals of that project was the development of a computational model for simulation of the Wave Adaptive Modular Vessel (WAM-V®) under spray generating conditions.

For this purpose, a Semi-Lagrangian Particle Finite Element Method (SL-PFEM) has been applied. This is the latest development within the framework of the so-called Particle Finite Element Method (PFEM), using the X-IVAS (eXplicit Integration along the Velocity and Acceleration Streamlines) scheme.

In this presentation we demonstrate the applicability of the SL-PFEM using the X-IVAS scheme for the simulation of the Wave Adaptive Modular Vehicle under spray generating conditions.

PRESENTATION

This presentation was held at the 31st Symposium on Naval Hydrodynamics on September 11-16th, 2016.

Draft García-Espinosa 273512028 2274 31st SNH.jpg

ACKNOWLEDGEMENTS

This study was partially supported by the WAM-V project funded under the Navy Grant N62909-12-1-7101 issued by Office of Naval Research Global, the SAFECON project (ref. 267521, FP7-IDEAS-ERC), the FORECAST project (ref. 664910, H2020-ERC-2014-PoC) and the X-SHEAKS project (ref. ENE2014-59194-C2-1-R). The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.

Permission to use the image shown in Figure 2 has been granted by Prof. Mehdi Ahmadian, VirginiaTech, USA. This image has appeared earlier in Andrew William Peterson’s Ph.D. thesis (2014), figure 3.12, page 55.

REFERENCES

Becker, P., Idelsohn, S.R., Oñate, E.: A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Computational Mechanics, Vol. 55, Issue 6, June 2015, pp. 1091-1104. DOI 10.1007/s00466-014-1107-0.

Becker, P. An enhanced Particle Finite Element Method with special emphasis on landslides and debris flows. Ph.D. thesis, Barcelona Tech (2015).

Celledoni, E., Kometa, B.K., Verdier, O.: High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations. Journal of Scientific Computing, Vol. 66, Issue 1, Jan. 2016, pp. 91-115. DOI 10.1007/s10915-015-0015-6

Courant, R., Friedrichs, K., Lewy, H.: On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, Vol. 11, No. 2, 1967, pp. 215–234. DOI 10.1147/rd.112.0215.

Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics Vol. 5, No. 3, 1952, pp. 243–255. DOI 10.1002/cpa.3160050303.

Dadvand, P., Rossi, R., Oñate, E.: An Object-Oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications. Archives of Computational Methods in Engineering, Vol. 17, No. 3, 2010, pp. 253–297. DOI 10.1007/s11831-010-9045-2.

Dupont, T.F., Liu, Y.: Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics, Vol. 190, No. 1, 2003, pp. 311–324. DOI 10.1016/S0021-9991(03)00276-6.

Dupont, T.F., Liu, Y.: Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations. Mathematics of Computation. Vol. 76, No. 258, 2007, pp. 647–669. DOI 10.1090/S0025-5718-06-01898-9.

Evans, M.W., Harlow, F.H.: “The Particle-in-Cell Method for Hydrodynamic Calculations”. LA-2139 Nov. 1957, Los Alamos National Laboratory, Los Alamos, New Mexico.

García-Espinosa, J., Oñate, E., Serván-Camas, B., Nadukandi, P. and Becker, P.A. “Advanced Numerical Simulation and Performance Evaluation of WAM-V ® in Spray Generating Conditions. Final Report. Navy Grant N62909-12-1-7101.” July 2015. CIMNE, Barcelona, Spain.

Gelet, R.M., Nguyen, G., Rognon, P.: Modelling interaction of incompressible fluids and deformable particles with the Material Point Method. In: The 6th International Conference on Computational Methods (ICCM2015) (2015)

García-Espinosa, J., Onate, E.: An unstructured finite element solver for ship hydrodynamics problems. Journal of Applied Mechanics Vol. 70, No. 1, 2003, pp. 18-26.

Harlow, F.H.: Hydrodynamic Problems Involving Large Fluid Distortions. Journal of the ACM, Vol. 4, No 2, 1957, pp. 137–142. DOI 10.1145/ 320868.320871.

Idelsohn, S.R., Marti, J., Becker, P., Oñate, E.: Analysis of multifluid flows with large time steps using the particle finite element method. International Journal for Numerical Methods in Fluids, Vol. 75, No 9, 2014, pp. 621–644.

Idelsohn, S.R., Nigro, N., Limache, A., Oñate, E.: Large time-step explicit integration method for solving problems with dominant convection. Computer Methods in Applied Mechanics and Engineering No. 217-220, 2012, pp. 168–185. DOI 10.1016/j.cma.2011.12.008.

Idelsohn, S.R., Nigro, N.M., Gimenez, J.M., Rossi, R., Marti, J.M.: A fast and accurate method to solve the incompressible Navier-Stokes equations. Engineering Computations Vol. 30, No. 2, 2013, pp. 197–222. DOI 10.1108/02644401311304854.

Idelsohn, S.R., Oñate, E., Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with freesurfaces and breaking waves. International Journal for Numerical Methods in Engineering, Vol. 61, No. 7, 2004, pp. 964–989. DOI 10.1002/nme.1096.

Idelsohn, S.R., Oñate, E., Nigro, N., Becker, P., Gimenez, J.: Lagrangian versus Eulerian integration errors. Computer Methods in Applied Mechanics and Engineering Vol. 293, 2015, pp. 191–206. DOI 10.1016/j.cma.2015.04.003.

MacCormack, R.W.: The Effect of Viscosity in Hypervelocity Impact Cratering. Journal of Spacecraft and Rockets Vol. 40, No. 5, 2003, pp. 757–763. DOI 10.2514/2.6901.

Min, C., Gibou, F.: A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids. Journal of Computational Physics 219(2), 912–929 (2006). DOI 10.1016/j.jcp.2006.07.

Nadukandi, P.: Numerically stable formulas for a particle-based explicit exponential integrator. Computational Mechanics, Vol. 55, No. 5, 2015, pp. 903–920. DOI 10.1007/s00466-015-1142-5.

Nadukandi, P., Serván-Camas, B., Becker, P.A. and García-Espinosa, J., Seakeeping with the semi-Lagrangian Particle Finite Element Method. Published online in Computational Particle Mechanics (2016). DOI 10.1007/s40571-016-0127-2

Nielson, G.M., Jung, I.H.: Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE Transactions on Visualization and Computer Graphics, Vol. 5, No. 4, 1999, pp. 360–372. DOI 10.1109/2945.817352.

Onate, E., García-Espinosa, J., Idelsohn, S. R. “Ships Hydrodynamics”. In Stein, de Borst and Hughes (eds.), Encyclopedia of computational mechanics. John Wiley & Sons, 2004. DOI: 10.1002/ 0470091355.ecm070

Peterson, A.W.: Simulation and Testing ofWave-Adaptive Modular Vessels. Ph.D. thesis, Virginia Polytechnic Institute and State University (2014).

Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean, Vol. 19, No. 1, 1981, pp. 35-46. DOI 10.1080/07055900.1981.9649098.

Sawyer, J.S.: A semi-Lagrangian method of solving the vorticity advection equation. Tellus, Vol. 15, No. 4, 1963, pp. 336–342. DOI 10.1111/j.2153-3490.1963.tb01396.x.

Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An Unconditionally Stable MacCormack Method. Journal of Scientific Computing. Vol. 35, No. 2-3, 2008, pp. 350–371. DOI 10.1007/s10915-007-9166-4.

Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Computer Physics Communications. Vol. 87, No. 1-2, 1995, pp. 236–252. DOI 10.1016/0010-4655(94)00170-7.

WAM-V: The Wave Adaptive Modular Vessel. URL http://www.wam-v.com

Zhang, D.Z., Zou, Q.,VanderHeyden,W.B., Ma, X.: Material point method applied to multiphase flows. Journal of Computational Physics, Vol. 227, No. 6, 2008, pp. 3159–3173. DOI 10.1016/ j.jcp.2007.11.021.

Back to Top

Document information

Published on 01/01/2016

Licence: CC BY-NC-SA license

Document Score

0

Views 42
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?