(Created page with " == Abstract == At the present level of development of long, branched gas transmission networks (GTN), solving the problems of improving safety, efficiency and environmental...") |
m (Scipediacontent moved page Draft Content 727265093 to Seleznev 2010a) |
(No difference)
|
At the present level of development of long, branched gas transmission networks (GTN), solving the problems of improving safety, efficiency and environmental soundness of operation of industrial pipeline systems calls for the application of methods of numerical simulation. The development of automated devices for technical inspection and process control, and availability of high-performance computer hardware have created a solid technical basis to introduce numerical simulation methods into the industrial practice of GTN analysis and operation. One of the promising approaches for numerical analysis of GTN operating is the development and application of high-accuracy computational fluid dynamics (CFD) simulators of modes of gas mixture transmission through long, branched pipeline systems (CFD-simulator) (Seleznev, 2007). Actually, a CFD-simulator is a special-purpose software simulating, in online and real time modes with a high similarity and in sufficient detail, the physical processes of gas mixture transmission through a particular GTN. The development of a CFD-simulator focuses much attention to correctness of simulation of gas flows in the pipelines and to the impact produced by operation of relevant GTN gas pumping equipment (including gas compressor unit (GCU), valves, gas pressure reducers, etc.) and the environment upon the physical processes under study. From the standpoint of mathematical physics, a CFD-simulator performs numerical simulation of steady and transient, non-isothermal processes of a gas mixture flow in long, branched, multi-line, multi-section gas pipeline network. Such simulation is aimed at obtaining high-accuracy estimates of the actual distribution (over time and space) of fluid dynamics parameters for the full range of modes of gas mixture transmission through the specific GTN in normal and emergency conditions of its operation, as well as of the actual (temporal) distribution of main parameters of GTN equipment operation, which can be
Document type: Part of book or chapter of book
The URL or file path given does not exist.
The different versions of the original document can be found in:
Published on 01/01/2010
Volume 2010, 2010
DOI: 10.5772/7110
Licence: CC BY-NC-SA license
Are you one of the authors of this document?