(Created page with " == Abstract == A spatially abstracted transportation network is a graph where nodes are territory compartments (areas in geographic space) and edges, or links, are abstract...")
 
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
  
 
== Original document ==
 
== Original document ==
 +
<pdf>Media:Andrienko_et_al_2016a_4483_nectar_traffic_sim.pdf</pdf>
  
 
The different versions of the original document can be found in:
 
The different versions of the original document can be found in:

Latest revision as of 14:02, 14 October 2020

Abstract

A spatially abstracted transportation network is a graph where nodes are territory compartments (areas in geographic space) and edges, or links, are abstract constructs, each link representing all possible paths between two neighboring areas. By applying visual analytics techniques to vehicle traffic data from different territories, we discovered that the traffic intensity (a.k.a. traffic flow or traffic flux) and the mean velocity are interrelated in a spatially abstracted transportation network in the same way as at the level of street segments. Moreover, these relationships are consistent across different levels of spatial abstraction of a physical transportation network. Graphical representations of the flux-velocity interdependencies for abstracted links have the same shape as the fundamental diagram of traffic flow through a physical street segment, which is known in transportation science. This key finding substantiates our approach to traffic analysis, forecasting, and simulation leveraging spatial abstraction.\ud \ud We propose a framework in which visual analytics supports three high-level tasks, assess, forecast, and develop options, in application to vehicle traffic. These tasks can be carried out in a coherent workflow, where each next task uses the results of the previous one(s). At the 'assess' stage, vehicle trajectories are used to build a spatially abstracted transportation network and compute the traffic intensities and mean velocities on the abstracted links by time intervals. The interdependencies between the two characteristics of the links are extracted and represented by formal models, which enable the second step of the workflow, 'forecast', involving simulation of vehicle movements under various conditions. The previously derived models allow not only prediction of normal traffic flows conforming to the regular daily and weekly patterns but also simulation of traffic in extraordinary cases, such as road closures, major public events, or mass evacuation due to a disaster. Interactive visual tools support preparation of simulations and analysis of their results. When the simulation forecasts problematic situations, such as major congestions and delays, the analyst proceeds to the step 'develop options' for trying various actions aimed at situation improvement and investigating their consequences. Action execution can be imitated by interactively modifying the input of the simulation model. Specific techniques support comparisons between results of simulating different "what if" scenarios.

Document type: Part of book or chapter of book


Original document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document The different versions of the original document can be found in: DOIS: 10.1016/j.is.2015.08.007 10.1007/978-3-319-46131-1_7
Back to Top

Document information

Published on 01/01/2016

Volume 2016, 2016
DOI: 10.1016/j.is.2015.08.007
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?