Line 40: Line 40:
 
===2.1 Noisy Signal BSS Model===
 
===2.1 Noisy Signal BSS Model===
  
Source signals  [[Image:Draft_Jia_765291113-image1.png|600px]] come from different signal sources (assumes that the signal is continuous signal), so  [[Image:Draft_Jia_765291113-image2.png|600px]] can be think mutual statistical independence, As shown in Fig.1, [[Image:Draft_Jia_765291113-image3.png|600px]] is mixed signals or observation signals.
+
Source signals  [[Image:Draft_Jia_765291113-image1.png|24px]] come from different signal sources (assumes that the signal is continuous signal), so  [[Image:Draft_Jia_765291113-image2.png|24px]] can be think mutual statistical independence, As shown in Fig.1, [[Image:Draft_Jia_765291113-image3.png|24px]] is mixed signals or observation signals.
  
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
Line 55: Line 55:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image5.png|600px]]
+
| [[Image:Draft_Jia_765291113-image5.png|138px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
Line 61: Line 61:
  
  
where  [[Image:Draft_Jia_765291113-image6.png|600px]] is mixed coefficient, formula (1) can be write in vector as follow:
+
where  [[Image:Draft_Jia_765291113-image6.png|12px]] is mixed coefficient, formula (1) can be write in vector as follow:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 68: Line 68:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image7.png|600px]]
+
| [[Image:Draft_Jia_765291113-image7.png|114px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
Line 74: Line 74:
  
  
where  [[Image:Draft_Jia_765291113-image8.png|600px]] is a column vector of source signals,  [[Image:Draft_Jia_765291113-image9.png|600px]] is vector of mixed signals or observation signals,  [[Image:Draft_Jia_765291113-image10.png|600px]] is additive white Gaussian noise, which is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature.  [[Image:Draft_Jia_765291113-image11.png|600px]] is  [[Image:Draft_Jia_765291113-image12.png|600px]] mixing matrix. Problem of BSS only know observation signals and statistical independence property of Source signals. In virtue of the knowledge of probability distribution of Source signals we can recover Source signals. Assume  [[Image:Draft_Jia_765291113-image13.png|600px]] is  [[Image:Draft_Jia_765291113-image12.png|600px]] de-mixing matrix or separating matrix, problem of BSS can be describe as follow:
+
where  [[Image:Draft_Jia_765291113-image8.png|120px]] is a column vector of source signals,  [[Image:Draft_Jia_765291113-image9.png|120px]] is vector of mixed signals or observation signals,  [[Image:Draft_Jia_765291113-image10.png|24px]] is additive white Gaussian noise, which is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature.  [[Image:Draft_Jia_765291113-image11.png|12px]] is  [[Image:Draft_Jia_765291113-image12.png|30px]] mixing matrix. Problem of BSS only know observation signals and statistical independence property of Source signals. In virtue of the knowledge of probability distribution of Source signals we can recover Source signals. Assume  [[Image:Draft_Jia_765291113-image13.png|12px]] is  [[Image:Draft_Jia_765291113-image12.png|30px]] de-mixing matrix or separating matrix, problem of BSS can be describe as follow:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 81: Line 81:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image14.png|600px]]
+
| [[Image:Draft_Jia_765291113-image14.png|72px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
Line 87: Line 87:
  
  
where  [[Image:Draft_Jia_765291113-image15.png|600px]] is a estimate of or separated signals. BSS has two steps, firstly, create a cost function  [[Image:Draft_Jia_765291113-image16.png|600px]] with respect to  [[Image:Draft_Jia_765291113-image13.png|600px]] , if  [[Image:Draft_Jia_765291113-image17.png|600px]] can make  [[Image:Draft_Jia_765291113-image16.png|600px]] reach to maximum,  [[Image:Draft_Jia_765291113-image17.png|600px]] is the de-mixing matrix . Secondly, find a effective iterative algorithm for solution of  [[Image:Draft_Jia_765291113-image18.png|600px]] . In this paper, cost function is the function of signal noise ratio, optimize processing of cost function result in generalized eigenvalue problem, de-mixing matrix was achieved by solving the generalized eigenvalue problem without any iterative.
+
where  [[Image:Draft_Jia_765291113-image15.png|24px]] is a estimate of or separated signals. BSS has two steps, firstly, create a cost function  [[Image:Draft_Jia_765291113-image16.png|36px]] with respect to  [[Image:Draft_Jia_765291113-image13.png|12px]] , if  [[Image:Draft_Jia_765291113-image17.png|18px]] can make  [[Image:Draft_Jia_765291113-image16.png|36px]] reach to maximum,  [[Image:Draft_Jia_765291113-image17.png|18px]] is the de-mixing matrix . Secondly, find a effective iterative algorithm for solution of  [[Image:Draft_Jia_765291113-image18.png|66px]] . In this paper, cost function is the function of signal noise ratio, optimize processing of cost function result in generalized eigenvalue problem, de-mixing matrix was achieved by solving the generalized eigenvalue problem without any iterative.
  
 
===2.2 MSNR Algorithm===
 
===2.2 MSNR Algorithm===
  
Maximum signal-to-noise ratio (MSNR) algorithm belongs to matrix eigenvalue decomposition method. By constructing the signal-to-noise ratio contrast function and estimating the separation matrix by eigenvalue decomposition or generalized eigenvalue decomposition, the closed-form solution can be found directly without iterative optimization process. Therefore, it has the advantages of simple algorithm and fast running speed, and is convenient for real-time processing and hardware implementation of FPGA. The time continuous radio signal is sampled and changed into a discrete value. In the following formula, the time mark  [[Image:Draft_Jia_765291113-image19.png|600px]] becomes  [[Image:Draft_Jia_765291113-image20.png|600px]] .
+
Maximum signal-to-noise ratio (MSNR) algorithm belongs to matrix eigenvalue decomposition method. By constructing the signal-to-noise ratio contrast function and estimating the separation matrix by eigenvalue decomposition or generalized eigenvalue decomposition, the closed-form solution can be found directly without iterative optimization process. Therefore, it has the advantages of simple algorithm and fast running speed, and is convenient for real-time processing and hardware implementation of FPGA. The time continuous radio signal is sampled and changed into a discrete value. In the following formula, the time mark  [[Image:Draft_Jia_765291113-image19.png|8px]] becomes  [[Image:Draft_Jia_765291113-image20.png|12px]] .
  
According to the model of BSS, the error  [[Image:Draft_Jia_765291113-image21.png|600px]] between the source signal  [[Image:Draft_Jia_765291113-image22.png|600px]] and the output signal  [[Image:Draft_Jia_765291113-image23.png|600px]] is regarded as noise. When the minimum value of  [[Image:Draft_Jia_765291113-image24.png|600px]] is taken, the estimated value  [[Image:Draft_Jia_765291113-image23.png|600px]] is the optimal approximation of the source signal  [[Image:Draft_Jia_765291113-image22.png|600px]] , and the effect of BSS is the best. The power ratio of source signal  [[Image:Draft_Jia_765291113-image22.png|600px]] to  [[Image:Draft_Jia_765291113-image24.png|600px]] is defined as signal-to-noise ratio. When  [[Image:Draft_Jia_765291113-image24.png|600px]] is the smallest, it is equivalent to the largest signal-to-noise ratio. According to this estimation criterion, the signal-to-noise ratio functionis constructed as follows [6]:
+
According to the model of BSS, the error  [[Image:Draft_Jia_765291113-image21.png|102px]] between the source signal  [[Image:Draft_Jia_765291113-image22.png|24px]] and the output signal  [[Image:Draft_Jia_765291113-image23.png|30px]] is regarded as noise. When the minimum value of  [[Image:Draft_Jia_765291113-image24.png|24px]] is taken, the estimated value  [[Image:Draft_Jia_765291113-image23.png|30px]] is the optimal approximation of the source signal  [[Image:Draft_Jia_765291113-image22.png|24px]] , and the effect of BSS is the best. The power ratio of source signal  [[Image:Draft_Jia_765291113-image22.png|24px]] to  [[Image:Draft_Jia_765291113-image24.png|24px]] is defined as signal-to-noise ratio. When  [[Image:Draft_Jia_765291113-image24.png|24px]] is the smallest, it is equivalent to the largest signal-to-noise ratio. According to this estimation criterion, the signal-to-noise ratio functionis constructed as follows [6]:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 100: Line 100:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image25.png|600px]]
+
| [[Image:Draft_Jia_765291113-image25.png|246px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
Line 106: Line 106:
  
  
Because the source signal  [[Image:Draft_Jia_765291113-image22.png|600px]] is unknown, the mean value of noise is 0, so we use moving average of estimate signals  [[Image:Draft_Jia_765291113-image26.png|600px]] instead of source signals  [[Image:Draft_Jia_765291113-image22.png|600px]] . Formula  (4) can be write as:
+
Because the source signal  [[Image:Draft_Jia_765291113-image22.png|24px]] is unknown, the mean value of noise is 0, so we use moving average of estimate signals  [[Image:Draft_Jia_765291113-image26.png|30px]] instead of source signals  [[Image:Draft_Jia_765291113-image22.png|24px]] . Formula  (4) can be write as:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 113: Line 113:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image27.png|600px]]
+
| [[Image:Draft_Jia_765291113-image27.png|246px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
Line 119: Line 119:
  
  
where  [[Image:Draft_Jia_765291113-image28.png|600px]] is moving average of estimate signals  [[Image:Draft_Jia_765291113-image23.png|600px]] . We replace  [[Image:Draft_Jia_765291113-image29.png|600px]] with  [[Image:Draft_Jia_765291113-image23.png|600px]] in the molecule of formula (5) to simplify calculation, so we gained maximum signal noise ratio cost function as follow:
+
where  [[Image:Draft_Jia_765291113-image28.png|30px]] is moving average of estimate signals  [[Image:Draft_Jia_765291113-image23.png|30px]] . We replace  [[Image:Draft_Jia_765291113-image29.png|30px]] with  [[Image:Draft_Jia_765291113-image23.png|30px]] in the molecule of formula (5) to simplify calculation, so we gained maximum signal noise ratio cost function as follow:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 126: Line 126:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image30.png|600px]]
+
| [[Image:Draft_Jia_765291113-image30.png|180px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
Line 139: Line 139:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image31.png|600px]]
+
| [[Image:Draft_Jia_765291113-image31.png|78px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
Line 145: Line 145:
  
  
where  [[Image:Draft_Jia_765291113-image32.png|600px]] is a moving average of mixed signals  [[Image:Draft_Jia_765291113-image33.png|600px]] . The definition uses the moving average algorithm to predict the source signal. We substitute formula (3) and formula (7) into formula (6) and Formula (8) is deduced.
+
where  [[Image:Draft_Jia_765291113-image32.png|30px]] is a moving average of mixed signals  [[Image:Draft_Jia_765291113-image33.png|24px]] . The definition uses the moving average algorithm to predict the source signal. We substitute formula (3) and formula (7) into formula (6) and Formula (8) is deduced.
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 152: Line 152:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image34.png|600px]]
+
| [[Image:Draft_Jia_765291113-image34.png|378px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
Line 158: Line 158:
  
  
where  [[Image:Draft_Jia_765291113-image35.png|600px]] and  [[Image:Draft_Jia_765291113-image36.png|600px]] are correlation matrixs,  [[Image:Draft_Jia_765291113-image37.png|600px]] ,  [[Image:Draft_Jia_765291113-image38.png|600px]] .
+
where  [[Image:Draft_Jia_765291113-image35.png|108px]] and  [[Image:Draft_Jia_765291113-image36.png|42px]] are correlation matrixs,  [[Image:Draft_Jia_765291113-image37.png|66px]] ,  [[Image:Draft_Jia_765291113-image38.png|66px]] .
  
 
===2.3 Derivation of Separation Algorithms===
 
===2.3 Derivation of Separation Algorithms===
  
According to formula  (8), derivative of  [[Image:Draft_Jia_765291113-image39.png|600px]] with respect to is:
+
According to formula  (8), derivative of  [[Image:Draft_Jia_765291113-image39.png|60px]] with respect to is:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 169: Line 169:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image40.png|600px]]
+
| [[Image:Draft_Jia_765291113-image40.png|162px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
Line 175: Line 175:
  
  
According to the definition, when the maximum value of the function  [[Image:Draft_Jia_765291113-image41.png|600px]] is obtained, the gradient is 0. So we get the following formula.
+
According to the definition, when the maximum value of the function  [[Image:Draft_Jia_765291113-image41.png|60px]] is obtained, the gradient is 0. So we get the following formula.
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 182: Line 182:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image42.png|600px]]
+
| [[Image:Draft_Jia_765291113-image42.png|72px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
Line 188: Line 188:
  
  
We can obtain de-mixing matrix  [[Image:Draft_Jia_765291113-image17.png|600px]] by solving formula (10), it has been proved solution of formula (10) that is eigenvector of [[Image:Draft_Jia_765291113-image43.png|600px]] [7]. All source signals can be recovered once: [[Image:Draft_Jia_765291113-image44.png|600px]] , where each row of  [[Image:Draft_Jia_765291113-image45.png|600px]] corresponds to exactly one extracted signal  [[Image:Draft_Jia_765291113-image46.png|600px]] .
+
We can obtain de-mixing matrix  [[Image:Draft_Jia_765291113-image17.png|18px]] by solving formula (10), it has been proved solution of formula (10) that is eigenvector of [[Image:Draft_Jia_765291113-image43.png|36px]] [7]. All source signals can be recovered once: [[Image:Draft_Jia_765291113-image44.png|48px]] , where each row of  [[Image:Draft_Jia_765291113-image45.png|12px]] corresponds to exactly one extracted signal  [[Image:Draft_Jia_765291113-image46.png|12px]] .
  
 
===2.4 Auto-correlation De-noising===
 
===2.4 Auto-correlation De-noising===
  
The auto-correlation function describes the relationship of the same signal at different times [8]. For signal  [[Image:Draft_Jia_765291113-image47.png|600px]] , its auto-correlation function is defined as:
+
The auto-correlation function describes the relationship of the same signal at different times [8]. For signal  [[Image:Draft_Jia_765291113-image47.png|24px]] , its auto-correlation function is defined as:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 199: Line 199:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image48.png|600px]]
+
| [[Image:Draft_Jia_765291113-image48.png|162px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
Line 205: Line 205:
  
  
where  [[Image:Draft_Jia_765291113-image49.png|600px]] is the time delay of auto-correlation function,  [[Image:Draft_Jia_765291113-image50.png|600px]] is the period of the signal. Formula (11) shows that the auto-correlation function of the periodic signal is the same period as that of the original signal. However, noise signals are generally uncorrelated. When the time delay is zero, the maximum auto-correlation value is obtained and tends to zero with the increase of the time delay. Therefore, the auto-correlation function can be used in the noise reduction of mechanical vibration signal, so as to retain the useful periodic signal in the vibration signal, effectively remove the random aperiodic white Gaussian noise, and achieve remarkable noise reduction effect.
+
where  [[Image:Draft_Jia_765291113-image49.png|6px]] is the time delay of auto-correlation function,  [[Image:Draft_Jia_765291113-image50.png|12px]] is the period of the signal. Formula (11) shows that the auto-correlation function of the periodic signal is the same period as that of the original signal. However, noise signals are generally uncorrelated. When the time delay is zero, the maximum auto-correlation value is obtained and tends to zero with the increase of the time delay. Therefore, the auto-correlation function can be used in the noise reduction of mechanical vibration signal, so as to retain the useful periodic signal in the vibration signal, effectively remove the random aperiodic white Gaussian noise, and achieve remarkable noise reduction effect.
  
The auto-correlation function values of white Gaussian noise and rotor vibration signals are shown in Fig. 2. When the vibration periodic signal contains Gauss white noise, the auto-correlation value is the largest near this condition  [[Image:Draft_Jia_765291113-image51.png|600px]] , which is affected by noise. Therefore, we can remove some auto-correlation data near the condition  [[Image:Draft_Jia_765291113-image51.png|600px]] during removing noises.
+
The auto-correlation function values of white Gaussian noise and rotor vibration signals are shown in Fig. 2. When the vibration periodic signal contains Gauss white noise, the auto-correlation value is the largest near this condition  [[Image:Draft_Jia_765291113-image51.png|30px]] , which is affected by noise. Therefore, we can remove some auto-correlation data near the condition  [[Image:Draft_Jia_765291113-image51.png|30px]] during removing noises.
  
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
Line 215: Line 215:
 
<span style="text-align: center; font-size: 75%;">'''Figure 2. '''Auto-correlation function values of white Gaussian noise signal and rotor vibration signals</span></div>
 
<span style="text-align: center; font-size: 75%;">'''Figure 2. '''Auto-correlation function values of white Gaussian noise signal and rotor vibration signals</span></div>
  
The improved MSNR algorithm based on auto-correlation de-noising can be summarized as: (1) Finding the auto-correlation function of noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|600px]] . (2) Removing the data near the condition  [[Image:Draft_Jia_765291113-image51.png|600px]] and using the remaining data  [[Image:Draft_Jia_765291113-image53.png|600px]] as the data of blind separation. (3) Blind separation of de-noised mixed signals  [[Image:Draft_Jia_765291113-image53.png|600px]] by MSNR algorithm. The improved MSNR algorithm with four lines of Matlab code is listed in Table 1.
+
The improved MSNR algorithm based on auto-correlation de-noising can be summarized as: (1) Finding the auto-correlation function of noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|24px]] . (2) Removing the data near the condition  [[Image:Draft_Jia_765291113-image51.png|30px]] and using the remaining data  [[Image:Draft_Jia_765291113-image53.png|24px]] as the data of blind separation. (3) Blind separation of de-noised mixed signals  [[Image:Draft_Jia_765291113-image53.png|24px]] by MSNR algorithm. The improved MSNR algorithm with four lines of Matlab code is listed in Table 1.
  
 
'''Table 1.'''  The improved MSNR algorithm
 
'''Table 1.'''  The improved MSNR algorithm
Line 244: Line 244:
 
==3. Simulations and Results==
 
==3. Simulations and Results==
  
In order to verify the effectiveness of the algorithm, two sinusoidal periodic signals with different frequencies are used to simulate the mixing of vibration signals caused by different rotors. After the original vibration signal  [[Image:Draft_Jia_765291113-image55.png|600px]] is superimposed with Gaussian white noise whose signal-to-noise ratio is -5dB, the source signal completely submerged by a strong noise is more difficult to be restored and identified in the engineering fields [9]. The noisy mixed signal  [[Image:Draft_Jia_765291113-image47.png|600px]] is obtained by random mixing matrix ''A ''(such as ''A ''= [0.4684 0.1952; 0.7384 0.5483] ) . The number of samples N=1000. Evaluating the performance of BSS, a correlation coefficient  [[Image:Draft_Jia_765291113-image56.png|600px]] is introduced as a performance index [2].
+
In order to verify the effectiveness of the algorithm, two sinusoidal periodic signals with different frequencies are used to simulate the mixing of vibration signals caused by different rotors. After the original vibration signal  [[Image:Draft_Jia_765291113-image55.png|24px]] is superimposed with Gaussian white noise whose signal-to-noise ratio is -5dB, the source signal completely submerged by a strong noise is more difficult to be restored and identified in the engineering fields [9]. The noisy mixed signal  [[Image:Draft_Jia_765291113-image47.png|24px]] is obtained by random mixing matrix ''A ''(such as ''A ''= [0.4684 0.1952; 0.7384 0.5483] ) . The number of samples N=1000. Evaluating the performance of BSS, a correlation coefficient  [[Image:Draft_Jia_765291113-image56.png|12px]] is introduced as a performance index [2].
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 251: Line 251:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| [[Image:Draft_Jia_765291113-image57.png|600px]]
+
| [[Image:Draft_Jia_765291113-image57.png|180px]]
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
Line 257: Line 257:
  
  
[[Image:Draft_Jia_765291113-image58.png|600px]] means that x and y are uncorrelated, and the signals correlation increases as  [[Image:Draft_Jia_765291113-image59.png|600px]] approaches unity, the signals become fully correlated as  [[Image:Draft_Jia_765291113-image59.png|600px]] becomes unity.
+
[[Image:Draft_Jia_765291113-image58.png|66px]] means that x and y are uncorrelated, and the signals correlation increases as  [[Image:Draft_Jia_765291113-image59.png|42px]] approaches unity, the signals become fully correlated as  [[Image:Draft_Jia_765291113-image59.png|42px]] becomes unity.
  
In the first simulation, the noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|600px]] are separated directly by the original MSNR algorithm, the separation results are shown in Fig. 4. After separation, the correlation coefficients between the separated signals and the sources are 0.4978 and 0.4806 respectively, the separation effect is not good and it is very difficult to recognize separated signals correctly.
+
In the first simulation, the noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|24px]] are separated directly by the original MSNR algorithm, the separation results are shown in Fig. 4. After separation, the correlation coefficients between the separated signals and the sources are 0.4978 and 0.4806 respectively, the separation effect is not good and it is very difficult to recognize separated signals correctly.
  
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
Line 267: Line 267:
 
<span style="text-align: center; font-size: 75%;">'''Figure 4. '''Separation of noisy mixed signals by the original MSNR algorithm (SNR=-5dB)</span></div>
 
<span style="text-align: center; font-size: 75%;">'''Figure 4. '''Separation of noisy mixed signals by the original MSNR algorithm (SNR=-5dB)</span></div>
  
In the second simulation, the noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|600px]] are separated by the improved MSNR algorithm. The separation results are shown in Fig. 5. After separation, the correlation coefficients between the separated signals and the sources are 0.9987 and 0.9988 respectively, the sources are well recovered and the separation effect has been significantly improved.
+
In the second simulation, the noisy mixed signals  [[Image:Draft_Jia_765291113-image47.png|24px]] are separated by the improved MSNR algorithm. The separation results are shown in Fig. 5. After separation, the correlation coefficients between the separated signals and the sources are 0.9987 and 0.9988 respectively, the sources are well recovered and the separation effect has been significantly improved.
  
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">

Revision as of 10:20, 9 July 2020


Abstract: During the operation of the engine rotor, the vibration signal measured by the sensor is the mixed signal of each vibration source, and contains strong noise at the same time. In this paper, a new separation method for mixed vibration signals in strong noise environment (such as SNR=-5) is proposed. Firstly, the time-delay auto-correlation de-noising method is used to de-noise the mixed signals, and then one common algorithm (MSNR algorithm is used here) is adopted to separate the mixed vibration signals, which can improves the separation performance. The simulation results verify the validity of the method. The proposed method provides a new idea for health monitoring and fault diagnosis of engine rotor vibration signals.

Keywords: blind source separation, rotor, vibration signals, auto-correlation de-noising, high-noise environments.

*Corresponding author: Yinjie Jia (jiayinjie@hhu.edu.cn)

1. Introduction

During the operation of rotating machinery, the changes of physical parameters such as vibration and noise will inevitably occur. These changes are often the early fault factors leading to engine failure. The vibration signal measured by the sensor installed on the rotating machinery is a mixture of several vibration signals. How to analyze, process and identify these signals is very important for judging the working state of rotating machinery and fault diagnosis. Various traditional modern signal processing methods, such as Fourier transform, short-time Fourier transform and wavelet transform, have been widely used in vibration signal analysis. However, for mixed vibration signals in rotating machinery, the above analysis methods have obvious shortcomings, and it is difficult to separate or extract source signals independently.

Blind source separation (BSS) technology can separate multiple mixed signals, and the separated output signal will not lose the weak feature information in the source signal. The seminal work on BSS is by Jutten and Herault in 1985 [1], the problem is to extract the underlying source signals from a set of mixtures, where the mixing matrix is unknown. In other words, BSS seeks to recover original source signals from their mixtures without any prior information on the sources or the parameters of the mixtures. Its research results have been widely applied in many fields, such as speech recognition, wireless communication, biomedicine, image processing, vibration signals separation, and so on [2-5].

There have been many effective and distinctive BSS algorithms, including fast fixed-point algorithm, natural gradient algorithm, EASI algorithm and JADE algorithm. When separating noiseless mixed signals, these algorithms show good separation performance. However, when the signal-to-noise ratio of the noisy signal is very low, the separation performance will become very poor, because these algorithms are derived without considering the noise model. Noise is ubiquitous, its existence not only has a serious impact on the normal work of the system, but also affects the normal measurement of useful signals. In signal processing, in order to retain useful signals, people always try their best to remove background noise. So the research of signal detection, especially the extraction and detection of weak signals submerged in strong noise, is a common problem that many engineering applications face and need to solve urgently.

In the process of machine operation, the vibration signal measured by vibration sensor will inevitably contain noise signal. When the BSS algorithm is used to separate the mixed vibration signals directly, it may cause great errors or draw wrong conclusions. Therefore, noise reduction is particularly important before blind separation of mechanical vibration signals.

Many scholars have used the combination of wavelet de-noising and BSS to separate mixed signals in noisy environment, and achieved some results. However, the wavelet de-noising method needs to set threshold, which may remove weak signals of useful components in mixed signals, leading to wrong separation results. Time-delay auto-correlation de-noising method is widely used in the de-noising of rotor vibration signals, and it does not lose useful components in the de-noising process.

Nowadays, there have been lots of BSS algorithms to calculate a de-mixing matrix, so we can make the estimated source signal only by the received signal. In this paper we select and optimize the BSS algorithm based on MSNR [6]. It has very low computational complexity because de-mixing matrix can be achieved without any iterative.

In this paper, the time-delay auto-correlation method is used to de-noise the noisy mixed signal, and then the MSNR algorithm is used to separate the de-noised mixed signal. The separation effect is further improved.

The rest of the paper is organized as follows. In Section 2, we introduce the noisy signal BSS model and principle of the time-delay auto-correlation method, the improved MSNR algorithm is summarized in the end. In Section 3, the simulation experiment that indicates the effectiveness of the method is presented. The final section is a summary of the content of this paper and possible application areas.

2. Methodology

2.1 Noisy Signal BSS Model

Source signals Draft Jia 765291113-image1.png come from different signal sources (assumes that the signal is continuous signal), so Draft Jia 765291113-image2.png can be think mutual statistical independence, As shown in Fig.1, Draft Jia 765291113-image3.png is mixed signals or observation signals.

Draft Jia 765291113-image4.png
Figure 1. Noisy blind source separation model

The problem of basic linear BSS can be expressed algebraically as follows:

Draft Jia 765291113-image5.png
(1)


where Draft Jia 765291113-image6.png is mixed coefficient, formula (1) can be write in vector as follow:

Draft Jia 765291113-image7.png
(2)


where Draft Jia 765291113-image8.png is a column vector of source signals, Draft Jia 765291113-image9.png is vector of mixed signals or observation signals, Draft Jia 765291113-image10.png is additive white Gaussian noise, which is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. Draft Jia 765291113-image11.png is Draft Jia 765291113-image12.png mixing matrix. Problem of BSS only know observation signals and statistical independence property of Source signals. In virtue of the knowledge of probability distribution of Source signals we can recover Source signals. Assume Draft Jia 765291113-image13.png is Draft Jia 765291113-image12.png de-mixing matrix or separating matrix, problem of BSS can be describe as follow:

Draft Jia 765291113-image14.png
(3)


where Draft Jia 765291113-image15.png is a estimate of or separated signals. BSS has two steps, firstly, create a cost function Draft Jia 765291113-image16.png with respect to Draft Jia 765291113-image13.png , if Draft Jia 765291113-image17.png can make Draft Jia 765291113-image16.png reach to maximum, Draft Jia 765291113-image17.png is the de-mixing matrix . Secondly, find a effective iterative algorithm for solution of Draft Jia 765291113-image18.png . In this paper, cost function is the function of signal noise ratio, optimize processing of cost function result in generalized eigenvalue problem, de-mixing matrix was achieved by solving the generalized eigenvalue problem without any iterative.

2.2 MSNR Algorithm

Maximum signal-to-noise ratio (MSNR) algorithm belongs to matrix eigenvalue decomposition method. By constructing the signal-to-noise ratio contrast function and estimating the separation matrix by eigenvalue decomposition or generalized eigenvalue decomposition, the closed-form solution can be found directly without iterative optimization process. Therefore, it has the advantages of simple algorithm and fast running speed, and is convenient for real-time processing and hardware implementation of FPGA. The time continuous radio signal is sampled and changed into a discrete value. In the following formula, the time mark Draft Jia 765291113-image19.png becomes Draft Jia 765291113-image20.png .

According to the model of BSS, the error Draft Jia 765291113-image21.png between the source signal Draft Jia 765291113-image22.png and the output signal Draft Jia 765291113-image23.png is regarded as noise. When the minimum value of Draft Jia 765291113-image24.png is taken, the estimated value Draft Jia 765291113-image23.png is the optimal approximation of the source signal Draft Jia 765291113-image22.png , and the effect of BSS is the best. The power ratio of source signal Draft Jia 765291113-image22.png to Draft Jia 765291113-image24.png is defined as signal-to-noise ratio. When Draft Jia 765291113-image24.png is the smallest, it is equivalent to the largest signal-to-noise ratio. According to this estimation criterion, the signal-to-noise ratio functionis constructed as follows [6]:

Draft Jia 765291113-image25.png
(4)


Because the source signal Draft Jia 765291113-image22.png is unknown, the mean value of noise is 0, so we use moving average of estimate signals Draft Jia 765291113-image26.png instead of source signals Draft Jia 765291113-image22.png . Formula (4) can be write as:

Draft Jia 765291113-image27.png
(5)


where Draft Jia 765291113-image28.png is moving average of estimate signals Draft Jia 765291113-image23.png . We replace Draft Jia 765291113-image29.png with Draft Jia 765291113-image23.png in the molecule of formula (5) to simplify calculation, so we gained maximum signal noise ratio cost function as follow:

Draft Jia 765291113-image30.png
(6)


According to formula (3), we get the formula (7) as follows.

Draft Jia 765291113-image31.png
(7)


where Draft Jia 765291113-image32.png is a moving average of mixed signals Draft Jia 765291113-image33.png . The definition uses the moving average algorithm to predict the source signal. We substitute formula (3) and formula (7) into formula (6) and Formula (8) is deduced.

Draft Jia 765291113-image34.png
(8)


where Draft Jia 765291113-image35.png and Draft Jia 765291113-image36.png are correlation matrixs, Draft Jia 765291113-image37.png , Draft Jia 765291113-image38.png .

2.3 Derivation of Separation Algorithms

According to formula (8), derivative of Draft Jia 765291113-image39.png with respect to is:

Draft Jia 765291113-image40.png
(9)


According to the definition, when the maximum value of the function Draft Jia 765291113-image41.png is obtained, the gradient is 0. So we get the following formula.

Draft Jia 765291113-image42.png
(10)


We can obtain de-mixing matrix Draft Jia 765291113-image17.png by solving formula (10), it has been proved solution of formula (10) that is eigenvector of Draft Jia 765291113-image43.png [7]. All source signals can be recovered once: Draft Jia 765291113-image44.png , where each row of Draft Jia 765291113-image45.png corresponds to exactly one extracted signal Draft Jia 765291113-image46.png .

2.4 Auto-correlation De-noising

The auto-correlation function describes the relationship of the same signal at different times [8]. For signal Draft Jia 765291113-image47.png , its auto-correlation function is defined as:

Draft Jia 765291113-image48.png
(11)


where Draft Jia 765291113-image49.png is the time delay of auto-correlation function, Draft Jia 765291113-image50.png is the period of the signal. Formula (11) shows that the auto-correlation function of the periodic signal is the same period as that of the original signal. However, noise signals are generally uncorrelated. When the time delay is zero, the maximum auto-correlation value is obtained and tends to zero with the increase of the time delay. Therefore, the auto-correlation function can be used in the noise reduction of mechanical vibration signal, so as to retain the useful periodic signal in the vibration signal, effectively remove the random aperiodic white Gaussian noise, and achieve remarkable noise reduction effect.

The auto-correlation function values of white Gaussian noise and rotor vibration signals are shown in Fig. 2. When the vibration periodic signal contains Gauss white noise, the auto-correlation value is the largest near this condition Draft Jia 765291113-image51.png , which is affected by noise. Therefore, we can remove some auto-correlation data near the condition Draft Jia 765291113-image51.png during removing noises.

Draft Jia 765291113-image52.png
Figure 2. Auto-correlation function values of white Gaussian noise signal and rotor vibration signals

The improved MSNR algorithm based on auto-correlation de-noising can be summarized as: (1) Finding the auto-correlation function of noisy mixed signals Draft Jia 765291113-image47.png . (2) Removing the data near the condition Draft Jia 765291113-image51.png and using the remaining data Draft Jia 765291113-image53.png as the data of blind separation. (3) Blind separation of de-noised mixed signals Draft Jia 765291113-image53.png by MSNR algorithm. The improved MSNR algorithm with four lines of Matlab code is listed in Table 1.

Table 1.  The improved MSNR algorithm

Input: The mixed signals X.

Output: The demixing matrix W and the separated signal Y.

1: Xd= denoise(X); % X is denoised by using auto-correlation de-noising.

2: XS= smoothdata(Xd,'movmean'); % Smooth X by averaging over each window.

3: [W,d]=eig(cov(Xd-XS),cov(Xd)); % Demixing matrix W is obtained from equation (10).

4: Y=(X*W)';  % Separated signal Y.


Fig. 3 presents the new system model of BSS based on the above-mentioned algorithm. The sequence numbers ①, ② , ③ and ④ in Fig. 3 represent steps 1, 2, 3 and 4 in Table 1, respectively.

Draft Jia 765291113-image54.png

Figure 3. System model based on the improved MSNR algorithm

3. Simulations and Results

In order to verify the effectiveness of the algorithm, two sinusoidal periodic signals with different frequencies are used to simulate the mixing of vibration signals caused by different rotors. After the original vibration signal Draft Jia 765291113-image55.png is superimposed with Gaussian white noise whose signal-to-noise ratio is -5dB, the source signal completely submerged by a strong noise is more difficult to be restored and identified in the engineering fields [9]. The noisy mixed signal Draft Jia 765291113-image47.png is obtained by random mixing matrix A (such as A = [0.4684 0.1952; 0.7384 0.5483] ) . The number of samples N=1000. Evaluating the performance of BSS, a correlation coefficient Draft Jia 765291113-image56.png is introduced as a performance index [2].

Draft Jia 765291113-image57.png
(12)


Draft Jia 765291113-image58.png means that x and y are uncorrelated, and the signals correlation increases as Draft Jia 765291113-image59.png approaches unity, the signals become fully correlated as Draft Jia 765291113-image59.png becomes unity.

In the first simulation, the noisy mixed signals Draft Jia 765291113-image47.png are separated directly by the original MSNR algorithm, the separation results are shown in Fig. 4. After separation, the correlation coefficients between the separated signals and the sources are 0.4978 and 0.4806 respectively, the separation effect is not good and it is very difficult to recognize separated signals correctly.

Draft Jia 765291113-image60.png
Figure 4. Separation of noisy mixed signals by the original MSNR algorithm (SNR=-5dB)

In the second simulation, the noisy mixed signals Draft Jia 765291113-image47.png are separated by the improved MSNR algorithm. The separation results are shown in Fig. 5. After separation, the correlation coefficients between the separated signals and the sources are 0.9987 and 0.9988 respectively, the sources are well recovered and the separation effect has been significantly improved.

Draft Jia 765291113-image61.png
Figure 5. Separation of de-noised mixed signals by the improved MSNR algorithm (SNR=-5dB)

Many repeated tests can reduce the randomness and improve the reliability of results. Therefore, in order to evaluate the stability of these algorithms, total number of iterations in the present study is set to 50. The two algorithms are compared with each other from the separation accuracy (average correlation coefficient) . Table 2 presents obtained values after 50 iterations.

Table 2.  Average correlation coefficient for different algorithms after 50 iterations (SNR=-5dB)

Algorithm average correlation coefficient
MSNR algorithm [6] 0.4862
proposed algorithm in this paper 0.9988


By comparing the two experiments, it is fully demonstrated that time-delay correlation de-noising can effectively remove noise and improve signal-to-noise ratio, which provides the precondition for the accurate realization of BSS of noisy mixed signals.

4. Conclusion

Aiming at blind source separation of rotor vibration signals in high-noise environments, an improved MSNR algorithm is proposed in this paper. Blind separation of mixed signals with strong noise can lead to large errors or even incorrect separation results. The time-delay auto-correlation de-noising method can effectively remove the strong noise signal without losing the useful components of the original signal, which greatly improves the signal-to-noise ratio and provides the precondition for the accurate realization of blind separation. It provides a new method for separating mixed signals in strong noise environment and further expands the applicability of the MSNR algorithm. Due to its simple principle and good transplantation capability, it can be applied to the vibration signals of various mechanical rotors, such as the separation and detection of vibration signals of aero-engine and internal combustion engine.

Acknowledgments

This work was partially supported by the project of industrial-academic-research cooperation of Jiangsu province (No.2019320802000301)

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

[1] J. H´erault, C. Jutten, B. Ans. D´etection de grandeurs primitives dans un message composite par une architecture de calcul neuromim´etique en apprentissage non supervis´e, Proc. SSIP, Nice, France, pp. 1017–1022, 1985.

[2] P. Xu, Y. Jia, Z. Wang, M. Jiang. Underdetermined Blind Source Separation for Sparse Signals based on the Law of Large Numbers and Minimum Intersection Angle Rule. Circuits Systems and Signal Processing, 39(5), 2442–2458, 2020.

[3] Y. Jia, P. Xu. Convolutive Blind Source Separation for Communication Signals Based on the Sliding Z-Transform. IEEE Access, 8, 41213–41219, 2020.

[4] Y. Cheng, Z. Li, Y. Jin, et al. Blind Source Separation of Multi Mixed Vibration Signal Based on Parallel Factor Analysis. Proc. Prognostics and System Health Management Conference, PHM, Harbin, China, pp. 1–8, 2017.

[5] P. Xu, Y. Jia. Blind source separation based on source number estimation and fast-ICA with a novel non-linear function. Proceedings of the romanian academy series a-mathematics physics technical sciences information science, 21(2), pp. 93–194, 2020.

[6] J. Ma, X. Zhang, X. Blind Source Separation Algorithm Based on Maximum Signal Noise Ratio. Proc. First International Conference on Intelligent Networks and Intelligent Systems,Wuhan, China, pp. 625–628, 2008.

[7] M. Borga. Learning multidimensional signal processing." Ph.D. dissertation, Linkoping University, Sweden, 1998.

[8] Y. Jia, P. Xu. Noise Cancellation in Vibration Signals Using an Oversampling and Two-Stage Autocorrelation Model. Results in Engineering, 6, p. 100136, 2020.

[9] D. Huang, J. Yang, D. Zhou, et al. Recovering an unknown signal completely submerged in strong noise by a new stochastic resonance method. Communications in Nonlinear Science and Numerical Simulation, 66, 156–166, 2019.

Back to Top

Document information

Published on 12/01/21
Accepted on 22/10/20
Submitted on 07/07/20

Volume 37, Issue 1, 2021
DOI: 10.23967/j.rimni.2020.10.008
Licence: CC BY-NC-SA license

Document Score

0

Views 171
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?