m (Cinmemj moved page Draft Samper 312518002 to Lohner et al 2007b) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Abstract== | ==Abstract== | ||
− | The solutions obtained for low Reynolds-number incompressible flows using the same flow solver and solution technique on body-fitted, embedded surface and immersed body grids of similar size are compared. The cases considered are a sphere at <math> | + | The solutions obtained for low Reynolds-number incompressible flows using the same flow solver and solution technique on body-fitted, embedded surface and immersed body grids of similar size are compared. The cases considered are a sphere at <math>Re=100</math> and an idealized stented aneurysm. It is found that the solutions using all these techniques converge to the same grid-independent solution. On coarser grids, the effect of higher-order boundary conditions is noticeable. Therefore, if the manual labor required to set up a body-fitted domain is excessive (as is often the case for patient-specific geometries with medical devices), and/or computing resources are plentiful, the embedded surface and immersed body approaches become very attractive options. |
==Full Document== | ==Full Document== | ||
<pdf>Media:Draft_Samper_312518002_8618_fld.1604.pdf</pdf> | <pdf>Media:Draft_Samper_312518002_8618_fld.1604.pdf</pdf> |
The solutions obtained for low Reynolds-number incompressible flows using the same flow solver and solution technique on body-fitted, embedded surface and immersed body grids of similar size are compared. The cases considered are a sphere at and an idealized stented aneurysm. It is found that the solutions using all these techniques converge to the same grid-independent solution. On coarser grids, the effect of higher-order boundary conditions is noticeable. Therefore, if the manual labor required to set up a body-fitted domain is excessive (as is often the case for patient-specific geometries with medical devices), and/or computing resources are plentiful, the embedded surface and immersed body approaches become very attractive options.
Published on 01/01/2007
DOI: 10.1002/fld.1604
Licence: CC BY-NC-SA license
Are you one of the authors of this document?