m (Cinmemj moved page Draft Samper 435300596 to Curiel et al 2013a)
 
(No difference)

Latest revision as of 09:35, 25 June 2020

Abstract

This article presents a numerical technique for the computation of damage in fibre-reinforced laminated composites which is embedded into an explicit finite element method. The technique is composed of two main components. First, a novel characterisation of the directions in which the various modes of damage propagate, which produces an effective damage localisation. This is conducted taking into consideration the strain-rate dependence. Second, a new mapping between the strain and stress spaces for the computation of the damage surfaces whereby time-stepping convergence is enhanced. Additionally, new damage initiation criteria in terms of strain damage surfaces are presented. Details of the in-house code developed are presented as well as the programming features. The capabilities of the technique are shown by means of tests on single fibre-reinforced element and low velocity impact on the laminate. It is shown that delamination is located in the expected regions by gradual progression of internal damage variables.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2013

DOI: 10.1177/1056789512446820
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?