m (Cinmemj moved page Draft Samper 864096091 to Oliver et al 2009a)
 
(No difference)

Latest revision as of 15:19, 7 May 2020

Abstract

In the first part of this work, the theoretical basis of a frictional contact domain method for two-dimensional large deformation problems is presented. Most of the existing contact formulations impose the contact constraints on the boundary of one of the contacting bodies, which necessitates the projection of certain quantities from one contacting surface onto the other. In this work, the contact constraints are formulated on a so-called contact domain, which has the same dimension as the contacting bodies. This contact domain can be interpreted as a fictive intermediate region connecting the potential contact surfaces of the deformable bodies. The introduced contact domain is subdivided into a non-overlapping set of patches and is endowed with a displacement field, interpolated from the displacements at the contact surfaces. This leads to a contact formulation that is based on dimensionless, strain-like measures for the normal and tangential gaps and that exactly passes the contact patch test. In addition, the contact constraints are enforced using a stabilized Lagrange multiplier formulation based on an interior penalty method (Nitsche method). This allows the condensation of the introduced Lagrange multipliers and leads to a purely displacement driven problem. An active set strategy, based on the concept of effective gaps as entities suitable for smooth extrapolation, is used for determining the active normal stick and slip patches of the contact domain.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2009

DOI: 10.1016.j.cma.2009.03.006
Licence: CC BY-NC-SA license

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?