(One intermediate revision by the same user not shown)
Line 2: Line 2:
  
 
Graphene deposited on planar surfaces often exhibits sharp and localized folds delimiting seemingly planar regions, as a result of compressive stresses transmitted by the substrate. Such folds alter the electronic and chemical properties of graphene, and therefore, it is important to understand their emergence, to either suppress them or control their morphology. Here, we study the emergence of out-of-plane deformations in supported and laterally strained graphene with high-fidelity simulations and a simpler theoretical model. We characterize the onset of buckling and the nonlinear behavior after the instability in terms of the adhesion and frictional material parameters of the graphene-substrate interface. We find that localized folds evolve from a distributed wrinkling linear instability due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify friction as a selection mechanism for the separation between folds, as the formation of far apart folds is penalized by the work of friction. Our systematic analysis is a first step towards strain engineering of supported graphene, and is applicable to other compressed thin elastic films weakly coupled to a substrate.
 
Graphene deposited on planar surfaces often exhibits sharp and localized folds delimiting seemingly planar regions, as a result of compressive stresses transmitted by the substrate. Such folds alter the electronic and chemical properties of graphene, and therefore, it is important to understand their emergence, to either suppress them or control their morphology. Here, we study the emergence of out-of-plane deformations in supported and laterally strained graphene with high-fidelity simulations and a simpler theoretical model. We characterize the onset of buckling and the nonlinear behavior after the instability in terms of the adhesion and frictional material parameters of the graphene-substrate interface. We find that localized folds evolve from a distributed wrinkling linear instability due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify friction as a selection mechanism for the separation between folds, as the formation of far apart folds is penalized by the work of friction. Our systematic analysis is a first step towards strain engineering of supported graphene, and is applicable to other compressed thin elastic films weakly coupled to a substrate.
 +
 +
==Full Document==
 +
 +
<pdf>Media:Zhang_Arroyo_2013a_5700_2013-JAP-ZA-blanc.pdf</pdf>

Latest revision as of 10:11, 3 March 2020

Abstract

Graphene deposited on planar surfaces often exhibits sharp and localized folds delimiting seemingly planar regions, as a result of compressive stresses transmitted by the substrate. Such folds alter the electronic and chemical properties of graphene, and therefore, it is important to understand their emergence, to either suppress them or control their morphology. Here, we study the emergence of out-of-plane deformations in supported and laterally strained graphene with high-fidelity simulations and a simpler theoretical model. We characterize the onset of buckling and the nonlinear behavior after the instability in terms of the adhesion and frictional material parameters of the graphene-substrate interface. We find that localized folds evolve from a distributed wrinkling linear instability due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify friction as a selection mechanism for the separation between folds, as the formation of far apart folds is penalized by the work of friction. Our systematic analysis is a first step towards strain engineering of supported graphene, and is applicable to other compressed thin elastic films weakly coupled to a substrate.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2013

DOI: 10.1063/1.4804265
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 34
Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?