m (Cinmemj moved page Draft Samper 789382529 to Millan et al 2013a)
 
(No difference)

Latest revision as of 11:45, 26 February 2020

Abstract

Calculations on general point-set surfaces are attractive because of their flexibility and simplicity in the preprocessing but present important challenges. The absence of a mesh makes it nontrivial to decide if two neighboring points in the three-dimensional embedding are nearby or rather far apart on the manifold. Furthermore, the topology of surfaces is generally not that of an open two-dimensional set, ruling out global parametrizations. We propose a general and simple numerical method analogous to the mathematical theory of manifolds, in which the point-set surface is described by a set of overlapping charts forming a complete atlas. We proceed in four steps: (1) partitioning of the node set into subregions of trivial topology; (2) automatic detection of the geometric structure of the surface patches by nonlinear dimensionality reduction methods; (3) parametrization of the surface using smooth meshfree (here maximum-entropy ) approximants; and (4) gluing together the patch representations by means of a partition of unity. Each patch may be viewed as a meshfree macro-element. We exemplify the generality, flexibility, and accuracy of the proposed approach by numerically approximating the geometrically nonlinear Kirchhoff–Love theory of thin-shells. We analyze standard benchmark tests as well as point-set surfaces of complex geometry and topology.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2013

DOI: 10.1002/nme.4403
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 34
Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?