(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
The variational multiscale method thought as an implicit large eddy simulation model for turbulent flows has been shown to be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity–pressure pairs, since it provides pressure stabilization. In this work, we consider a different approach, based on inf–sup stable elements and convection-only stabilization. In order to do so, we consider a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is assessed in this paper. Moreover, when inf–sup stable elements are used, the grad–div stabilization term has been shown to be essential to guarantee accurate solutions. Hence, a study of the influence of such term in the large eddy simulation of turbulent incompressible flows is also performed. Furthermore, a recursive block preconditioning strategy has been considered for the resolution of the problem with an implicit treatment of the projection terms. Two different benchmark tests have been solved: the Taylor–Green Vortex flow with <math>Re=1600</math>, and the Turbulent Channel Flow at <math>Re_r=395</math> and <math>Re_r=590</math>. | The variational multiscale method thought as an implicit large eddy simulation model for turbulent flows has been shown to be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity–pressure pairs, since it provides pressure stabilization. In this work, we consider a different approach, based on inf–sup stable elements and convection-only stabilization. In order to do so, we consider a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is assessed in this paper. Moreover, when inf–sup stable elements are used, the grad–div stabilization term has been shown to be essential to guarantee accurate solutions. Hence, a study of the influence of such term in the large eddy simulation of turbulent incompressible flows is also performed. Furthermore, a recursive block preconditioning strategy has been considered for the resolution of the problem with an implicit treatment of the projection terms. Two different benchmark tests have been solved: the Taylor–Green Vortex flow with <math>Re=1600</math>, and the Turbulent Channel Flow at <math>Re_r=395</math> and <math>Re_r=590</math>. | ||
+ | |||
+ | ==Full Document== | ||
+ | |||
+ | <pdf>Media:Colomes_et_al_2016a_7943_art051_preprint.pdf</pdf> |
The variational multiscale method thought as an implicit large eddy simulation model for turbulent flows has been shown to be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity–pressure pairs, since it provides pressure stabilization. In this work, we consider a different approach, based on inf–sup stable elements and convection-only stabilization. In order to do so, we consider a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is assessed in this paper. Moreover, when inf–sup stable elements are used, the grad–div stabilization term has been shown to be essential to guarantee accurate solutions. Hence, a study of the influence of such term in the large eddy simulation of turbulent incompressible flows is also performed. Furthermore, a recursive block preconditioning strategy has been considered for the resolution of the problem with an implicit treatment of the projection terms. Two different benchmark tests have been solved: the Taylor–Green Vortex flow with , and the Turbulent Channel Flow at and .
Published on 01/01/2016
DOI: 10.1016/j.cma.2016.02.026
Licence: CC BY-NC-SA license
Are you one of the authors of this document?