m (Cinmemj moved page Draft Samper 394940136 to Pros et al 2012a)
 
(No difference)

Latest revision as of 14:02, 30 October 2019

Abstract

Steel fiber reinforced concrete (SFRC) allows overcoming brittleness and weakness under tension, the main drawbacks of plain concrete. The influence of the fibers on the behavior of SFRC depends on their shape, length, slenderness, and also on their orientation and distribution into the plain concrete. The goal of this paper is to develop an ad hoc numerical strategy to account for the contribution of the fibers in the simulation of the mechanical response of SFRC. In the model presented, the individual fibers immersed in the concrete bulk are accounted for in their actual location and orientation. The selected approach is based on the ideas introduced in the immersed boundary (IB) methods. These methods were developed to account for 1D (or 2D) solids immersed in 2D (or 3D) fluids. Here, the concrete bulk is playing the role of the fluid and the cloud of steel fibers is acting as the immerse boundary (that is, a 1D structure in a 2D or 3D continuous). Thus, the philosophy of the IB methodology is used to couple the behavior of the two systems, the concrete bulk and fiber cloud, precluding the need of matching finite element meshes. Note that, considering the different size scales and the intricate geometry of the fiber cloud, the conformal matching of the meshes would be a restriction resulting in a practically unaffordable mesh. In the proposed approach, the meshes of the concrete bulk and fiber cloud are independent, and the models are coupled imposing displacement compatibility and equilibrium of the two systems. In the applications presented here, the concrete bulk is modeled using a standard nonlinear damage model. The constitutive model for the fibers is designed to account for the complex interaction between fibers and concrete. The fiber models are based on the previous investigations describing the concrete-fiber interaction and its dependence on the factors identified to be relevant: shape of the fiber (straight or hooked) and angle between the fiber and crack plane.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2012

DOI: 10.1002/nme.3312
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 10
Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?