(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | Published in ''Computational Particle Mechanics'' Vol. 5 (2), pp. 213-226, 2018<br /> | + | Published in ''Computational Particle Mechanics'', Vol. 5 (2), pp. 213-226, 2018<br /> |
doi: 10.1007/s40571-017-0164-5 | doi: 10.1007/s40571-017-0164-5 | ||
+ | |||
== Abstract == | == Abstract == | ||
The influence of the microstructural heterogeneities is an important topic in the study of materials. In the context of computational mechanics, it is therefore necessary to generate virtual materials that are statistically equivalent to the microstructure under study, and to connect that geometrical description to the different numerical methods. Herein, the authors present a procedure to model continuous solid polycrystalline materials, such as rocks and metals, preserving their representative statistical grain size distribution. The first phase of the procedure consists of segmenting an image of the material into adjacent polyhedral grains representing the individual crystals. This segmentation allows estimating the grain size distribution, which is used as the input for an advancing front sphere packing algorithm. Finally, Laguerre diagrams are calculated from the obtained sphere packings. The centers of the spheres give the centers of the Laguerre cells, and their radii determine the cells’ weights. The cell sizes in the obtained Laguerre diagrams have a distribution similar to that of the grains obtained from the image segmentation. That is why those diagrams are a convenient model of the original crystalline structure. The above-outlined procedure has been used to model real polycrystalline metallic materials. The main difference with previously existing methods lies in the use of a better particle packing algorithm. | The influence of the microstructural heterogeneities is an important topic in the study of materials. In the context of computational mechanics, it is therefore necessary to generate virtual materials that are statistically equivalent to the microstructure under study, and to connect that geometrical description to the different numerical methods. Herein, the authors present a procedure to model continuous solid polycrystalline materials, such as rocks and metals, preserving their representative statistical grain size distribution. The first phase of the procedure consists of segmenting an image of the material into adjacent polyhedral grains representing the individual crystals. This segmentation allows estimating the grain size distribution, which is used as the input for an advancing front sphere packing algorithm. Finally, Laguerre diagrams are calculated from the obtained sphere packings. The centers of the spheres give the centers of the Laguerre cells, and their radii determine the cells’ weights. The cell sizes in the obtained Laguerre diagrams have a distribution similar to that of the grains obtained from the image segmentation. That is why those diagrams are a convenient model of the original crystalline structure. The above-outlined procedure has been used to model real polycrystalline metallic materials. The main difference with previously existing methods lies in the use of a better particle packing algorithm. |
Published in Computational Particle Mechanics, Vol. 5 (2), pp. 213-226, 2018
doi: 10.1007/s40571-017-0164-5
The influence of the microstructural heterogeneities is an important topic in the study of materials. In the context of computational mechanics, it is therefore necessary to generate virtual materials that are statistically equivalent to the microstructure under study, and to connect that geometrical description to the different numerical methods. Herein, the authors present a procedure to model continuous solid polycrystalline materials, such as rocks and metals, preserving their representative statistical grain size distribution. The first phase of the procedure consists of segmenting an image of the material into adjacent polyhedral grains representing the individual crystals. This segmentation allows estimating the grain size distribution, which is used as the input for an advancing front sphere packing algorithm. Finally, Laguerre diagrams are calculated from the obtained sphere packings. The centers of the spheres give the centers of the Laguerre cells, and their radii determine the cells’ weights. The cell sizes in the obtained Laguerre diagrams have a distribution similar to that of the grains obtained from the image segmentation. That is why those diagrams are a convenient model of the original crystalline structure. The above-outlined procedure has been used to model real polycrystalline metallic materials. The main difference with previously existing methods lies in the use of a better particle packing algorithm.
Published on 01/01/2018
DOI: 10.1007/s40571-017-0164-5
Licence: CC BY-NC-SA license
Are you one of the authors of this document?