m (Cinmemj moved page Draft Samper 734666284 to Guasch Codina 2007a) |
|
(No difference)
|
An algebraic subgrid scale finite element method formally equivalent to the Galerkin Least-Squares method is presented to improve the accuracy of the Galerkin finite element solution to the two-dimensional convected Helmholtz equation. A stabilizing term has been added to the discrete weak formulation containing a stabilization parameter whose value turns to be the key for the good performance of the method. An appropriate value for this parameter has been obtained by means of a dispersion analysis. As an application, we have considered the case of aerodynamic sound radiated by incompressible flow past a two-dimensional cylinder. Following Lighthill’s acoustic analogy, we have used the time Fourier transform of the double divergence of the Reynolds stress tensor as a source term for the Helmholtz and convected Helmholtz equations and showed the benefits of using the subgrid scale stabilization.
Published on 01/01/2007
DOI: 10.1016/j.cma.2007.06.001
Licence: CC BY-NC-SA license
Are you one of the authors of this document?