(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Abstract==
+
==Resumen==
  
The objective of this work is to develop and evaluate a methodology for the solution
+
El objetivo de este trabajo es formular y evaluar una metodología para la resolución de las ecuaciones de Navier-Stokes para los fluidos viscoplásticos de Bingham y de Herschel-Bulkley mediante el método de los elementos finitos mixtos estabilizados velocidad/presión. Se desarrolla una formulación teórica, se realiza la implementación computacional y se presentan y evalúan soluciones numéricas para estos fluidos viscoplásticos.
of the Navier-Stokes equations for Bingham Herschel-Bulkley viscoplastic fluids using stabilized
+
mixed velocity/pressure finite elements. The theoretical formulation is developed and
+
implemented in a computer code. Numerical solutions for these viscoplastic flows are presented
+
and assessed.
+
Viscoplastic fluids are characterized by minimum shear stress called yield stress.
+
Above this yield stress, the fluid is able to flow. Below this yield stress, the fluid behaves as a
+
quasi-rigid body, with zero strain-rate.
+
First, the Navier-Stokes equations for incompressible fluid and two immiscible fluids
+
considering free surface are presented. A review of the Newtonian and non-Newtonian rheological
+
models is included, with a detailed description of the viscoplastic models. The regularized
+
viscoplastic models due to Papanastasiou are described. Double viscosity regularized
+
models are proposed.
+
The analytical solutions for parallel flows are deduced for Newtonian, Bingham, and
+
Herschel-Bulkley, pseudoplastic and dilatant fluids.
+
The discrete model is developed, and the Algebraic SubGrid Scale (ASGS) stabilization
+
method, the Orthogonal Subgrid scale (OSS) method and the split orthogonal subscales
+
method are introduced. For the cases of flows with a free surface, the simplified Eulerian
+
method is employed, with the level set method to solve the motion of the free.
+
A convergence study is performed to compare the ASGS and OSS stabilization
+
methods in parallel flows with Bingham and Herschel-Bulkley fluids. The double viscosity
+
regularized models show lower convergence error convergence than the regularized models
+
used commonly.
+
Numerical solutions developed in this work are applied to a broad set of benchmark
+
problems. They can be divided into three groups: Bingham flows, Herschel-Bulkley flows
+
and free surface flows.
+
The solutions obtained validate the methodology proposed in this research and compare
+
well with the analytical and numerical solutions, experimental and field data.
+
The methodology proposed in this work provides a computational tool to study confined
+
viscoplastic flows, common in industry, and debris viscoplastic flows with free surface.
+
  
 +
Los fluidos viscoplásticos se caracterizan por presentar una tensión de corte mínima, denominada tensión de fluencia. Por encima de esta tensión de corte mínima el fluido comienza a moverse. En caso de no superarse esta tensión de fluencia, el fluido se comporta como un cuerpo rígido o quasi-rígido, con velocidad de deformación nula.
 +
 +
Se presentan inicialmente las ecuaciones de Navier-Stokes para un fluido y dos fluidos incompresibles e inmiscibles considerando superficie libre. Se presenta una revisión de los modelos reológicos Newtonianos y los modelos no-Newtonianos. Se hace una descripción detallada de los modelos viscoplásticos. Se describen los modelos viscoplásticos regularizados de Papanastasiou. Se proponen modelos regualarizados de doble viscosidad como alternativa a los comúnmente usados.
 +
 +
Se deducen las soluciones analítica en flujos paralelos para el fluido Newtoniano, el fluido de Bingham, de Herschel-Bulkley, el fluido pseudoplástico y dilatante.
 +
 +
Se desarrolla el modelo discreto, así como la formulación estabilizada con los métodos de subescalas algebraica (Algebraic subgrid scale, ASGS), de subescalas ortogonales (Orthogonal subgrid scale, OSS) y de subescalas ortogonales con la presión y el termino convectivo desacoplados, split-OSS. En el caso del fluido con superficie libre se presenta el método euleriano simplificado, el cual usa el método de superficie de nivel level set para resolver el movimiento de esta superficie libre.
 +
 +
Se presenta un estudio de convergencia con los métodos de estabilización OSS y ASGS en los flujos paralelos de Bingham y de Herschel-Bulkley. Los modelos regularizados se doble viscosidad muestran menor error de convergencia que los usados regularmente.
 +
 +
Se presentan las soluciones numéricas desarrolladas en este trabajo para un amplio conjunto de problemas benchmark. Pueden dividirse en tres grupos: flujos de Bingham, flujos de Herschel-Bulkley y flujos con superficie libre. Las soluciones obtenidas validan la metodología propuesta en este trabajo de investigación comparándose muy bien con las soluciones analíticas, numéricas, con resultados experimentales y datos de campo.
 +
 +
La metodología propuesta en este trabajo proporciona una herramienta computacional para estudiar flujos viscoplásticos confinados, muy comunes en la industria, y los flujos detríticos viscoplásticos con superficie libre.
 +
 +
 +
<pdf>Media:Draft_Samper_187723667_2095_M142.pdf</pdf>
  
  
 
==References==
 
==References==
  
See pdf document
+
ABDALI, S. & MITSOULIS, E. 1992. "Entry and exit flows of Bingham fluids". J. Rheology, 36(2).
 +
 
 +
AHMED, A. & ALEXANDROU, A. 1994. "Processing of semi-solid materials using a shearthickening Bingham fluid model". J. Non-Newtonian Fluid Mechanics, ASME publication No. FED-179, 83-89.
 +
 
 +
ALEXANDER, J. 1961. "On complete solution for frictionless extrusion in plane strain". Q. J. Applied Mathematic, 19, 31-40.
 +
 
 +
ALEXANDROU, A., MCGILVREAY, T. & BURGOS, G. 2001. "Steady Herschel–Bulkley fluid flow in three-dimensional expansions". J. Non-Newtonian Fluid Mechanics, 100, 77-96.
 +
 
 +
ALLEBORN, K., NANDAKUMAR, K., RASZILLIER, H. & DURST, F. 1997. "Further contributions on the two-dimensional flow in a sudden expansion". J. Fluid Mechanical, 330, 169-188.
 +
 
 +
ANDRES, V. 1960. "Equilibrium and motion of a sphere in a viscoplastic fluid". Dokl. Akad. Nauk SSSR, 133, 777-780.
 +
 
 +
ANSLEY, R. & SMITH, T. 1967. "Motion of spherical particules in a Bingham plastic". J. A I Ch E, 13, 1193-1196.
 +
 
 +
ATAPATTU, D., CHHABRA, R. & UHLHERR, P. 1990. "Wall effect for spheres falling at small reynolds number in a viscoplastic medium". J. Non-Newtonian Fluid Mechanics, 38, 31-42.
 +
 
 +
ATAPATTU, D., CHHABRA, R. & UHLHERR, P. 1995. "Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag". J. Non-Newtonian Fluid Mechanics, 59, 245-265.
 +
 
 +
AZOUZ, U., SHIRAZI, S. & AZAR, J. 1993. "Numerical simulation of laminar flows of yiel-power law fluids in conduits of arbitrary cross-section". J. Fluid Engineering, 115, 710-716.
 +
 
 +
BADÍA, S. & CODINA, R. 2009. "Unified satbilized finite elemnt formulation for the Stokes and Darcy problems". SIAM J. Numerical analysis, 47, 1971-2000.
 +
 
 +
BAGNOL, R. 1954. "Experiment on a gravity free dispersión of large solid spheres in a newtonian fluid under shear". Proceeding of the Royal Society of London., A 225, 49-63.
 +
 
 +
BARNES, H. ‘‘The yield stress myth? Revisited’’. In: MOLDENAERS & KEUNINGS, P. A., eds. Proc. XIth Int. Congr. Rheology, 1992 Brussels, Belgium. Elsevier, Amsterdam, 576-578.
 +
 
 +
BARNES, H. 1997. "Thixotropy-a review". J. Non-Newtonian Fluid Mech., 70, 1.
 +
 
 +
BARNES, H. & WALTERS, K. 1985. ‘‘The yield stress myth?’’. Rheology Acta 24.
 +
 
 +
BATCHELOR, J. & HORSFALL, F. 1973. "Die swell in elastic and viscous fluids". Research Report No. 189. Rubber and Plastic Research Assoc. of Grain Britain.
 +
 
 +
BEAULNE, M. & MITSOULIS, E. 1997. "Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids". J. Non-Newtonian fluid mechanics, 72, 55-71.
 +
 
 +
BERCOVIER, M. & ENGELMAN, M. 1980. "A finite-element method for incompressible non-Newtonian flows". J. Computational Physics, 36, 313-326.
 +
 
 +
BERIS, A. N., TSAMOPOULOS, J. A., ARMSTRONG, R. C. & BROWN, R. A. 1985. "Creeping motions of sphere through a Bingham Plastic". J. Fluid Mechanical, 158, 219-244.
 +
 
 +
BHARTI, R., CHHABRA, R. & ESWARAN, V. 2006. "Steady flow of power law fluids across a circular cylinder". The Canadian Journal of Chemical Engineering, 84, 406-421.
 +
 
 +
BINGHAM, E. 1922. "Fluidity and plasticity", New York, McGraw-Hill.
 +
 
 +
BIRD, R., ARMSTRONG, R. & HASSAGER, O. 1987. "Dynamics of polymeric liquids", Wiley.
 +
 
 +
BIRD, R., DAI, G. & YARUSSO, B. 1983. "Rheology and flow of viscoplastic materials". Reviews Chemical Enginnering, 1, 1-70.
 +
 
 +
BLACKERY, J. & MITSOULIS, E. 1997. "Creeping motion of a sphere in tubes filled with a Bingham plastic material". J. Non-Newtonian Fluid Mechanics, 70, 59-77.
 +
 
 +
BOTELLA, O. & PEYRET, R. (eds.) 1998. "Benchmark spectral results on the lid_driven cavity flow", Great Britain: Elseiver.
 +
 
 +
BOZKUS, Z. & KASAP, A. 1998. "Comparison of physical and numerical dam-break simulations". Tr. J. Engineering and Environmental Science, 22, 429 -443.
 +
 
 +
BREZZI, F. & FORTIN, M. 1991. "Mixed and Hibrid Finite Element Methods", Springer Verlag.
 +
 
 +
BREZZI, F. & PITKÄRANTA, J. 1984. "On the stabilization of finite element approximations of Stokes equations". In: HACKBUSH, W. (ed.) Efficient Solution of Elliptic Systems. Vieweg, Braunschweig.
 +
 
 +
BROOKS, A., HUGHES, T. & RUSSO, A. 1982. "Streamlines Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompresible Navier-Stokes Equation". J. Computer Methods in Applied Mechanics and Engineering, 32, 199-259.
 +
 
 +
BURGOS, G. & ALEXANDROU, A. 1999. "Flow development of Herschel-Bulkley fluis in a sudden three-dimensional square expansion". J. Rheology.
 +
 
 +
CASSON, N. 1959. "Rhelogy of disperse system", New York, Ed. C. C. Mill, Pergamon Press.
 +
 
 +
CERVERA, M. & CHIUMENTI, M. 2009. "Size effect and localization in J2 plasticity". Int. J. Solids and Structures, 46(17), 3301-3312.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & CODINA, R. 2010a. "Mixed stabilied finite element methods in nonlinear solid mechanics. Part I: Formulation". J. Computer Methods in Applied Mechanics and Engineering, 46 (17), 3301-3312.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & CODINA, R. 2010b. "Mixed stabilied finite element methods in nonlinear solid mechanics. Part II: Strain localization". J. Computer Methods in Applied Mechanics and Engineering, 199 (37-40), 2571-2589.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & CODINA, R. 2011. "Mesh objetive modeling of cracks using continuos linear strain and displacement interpolations". Int. J. Numerical Methods in Enginnering, 87 (10), 962-987.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & DE SARACIBAR, A. 2004a. "Shear band localization via local J2 continuum damage mechanics". J. Computer Methods in Applied Mechanics and Engineering, 193, 849-880.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & DE SARACIBAR, A. 2004b. "Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity". Int. J. for Numerical and Analytical Methods in Geomechanics, 28, 373-393.
 +
 
 +
CERVERA, M., CHIUMENTI, M. & DI CAPUA, D. 2012. "Benchmarking on bifurcación and localization in J2 plasticity for plane strain conditions". J. Computer Methods in Applied Mechanics and Engineering, 241-244, 206-224.
 +
 
 +
CERVERA, M., CHIUMENTI, M., VALVERDE, Q. & DE SARACIBAR, A. 2003. "A mixed linear/linear simplicial elements for incompressible elasticity and plasticity". J. Computer Methods in Applied Mechanics and Engineering, 192 (49-50), 5253-5264.
 +
 
 +
CODINA, R. 2000a. "On stabilized finite element methods for linear systems of convection–diffusion-reaction equations". J. Computer Methods in Applied Mechanics and Engineering, 188, 61-82.
 +
 
 +
CODINA, R. 2000b. "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods". J. Computer Methods in Applied Mechanics and Engineering, 190, 1579-1599.
 +
 
 +
CODINA, R. 2000c. "Stabilized finite element approximation of transient incompresible flows using orthogonal subscale". CIMNE.
 +
 
 +
CODINA , R. 2001. "A stabilized finite element method for generalized stationary incompressible flows". J. Compu. Methods in Applied Mechanics and Engineering, 190, 2681-2706.
 +
 
 +
CODINA, R. 2002. "Stabilized finite element approximation of transient incompressible flows using orthogonal scale". J. Computer Methods in Applied Mechanics and Engineering, 191, 4295-4321.
 +
 
 +
CODINA, R. & BLASCO, J. 1997. "A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation". J. Computer Methods in Applied Mechanics and Engineering, 143, 373-391.
 +
 
 +
CODINA, R., HOUZEAUX, G., COPPOLA-OWEN, H. & BAIGE, J. 2009a. "The fixedmesh ALE approach for the numerical approximation of flow in moving domains". J. Computational Physics. Elseiver.
 +
 
 +
COPPOLA-OWEN, H. 2009b. "A fine element model for free surface and two fluid flows on fixed meshes". Ph. D, Universidad Politécnica de Cataluña.
 +
 
 +
COPPOLA-OWEN, H. & CODINA, R. 2005. "An improved level-set approach using finite elements wiyh discontinuous gradient pressure shape functios". In: BERGAN P., G. J., OÑATE E., KVAMSDAL (ed.) International Conference on Computational Methods in Marine Engineering MARINE 2005.
 +
 
 +
COVEY, G. & STANMORE, B. 1981. "Use of parallel-plate plastometer for the characterization of viscous fluid with a yield stress". J. Non-Newtonian Fluid Mechanics, 8, 249-260.
 +
 
 +
CROCHET, M. & KEUNINGS, R. 1982. "On numerical die swell calculation. J. Non-Newtonian Fluid Mechanics.
 +
 
 +
CHANSON, H. 2004b. "Environmental hydraulic of open channel flows", Oxford, UK, Elseiver Butterwortj-Heinemann.
 +
 
 +
CHANSON, H. 2005a. "Aplications of the saint-venant equations and method of characterístic to the dam break wave problem".
 +
 
 +
CHANSON, H. "Analytical solution of dam break wave with flow resistence. Application to tsunami surges". In: B. H. JUN, S. I. L., I. W. SEO Y G. W. CHOI. EDITORS, ed. Proc. 31th Biennal IAHR Congress, 2005b Seoul, Korea. Theme D1, Paper 0137, pp. 3341-3353.
 +
 
 +
CHHABRA, R. 1986. "Steady Non-Newtonian flow about a rigid sphere". Encyclopedia of fluid mechanics. Houston: Gulf: In N. P. Cheremisinoff (Ed.)
 +
 
 +
CHHABRA, R. (ed.) 1993. "Bubles, drops and particles in Non-Newtonian fluid", Boca Raton, FL: CRC Press.
 +
 
 +
CHHABRA, R., RAMI, K. & UHLHERR, P. 2001. "Drag on cylinder in shear thinning viscoelastic liquids". J. Chemical Engineering Science, 56, 2221-2227.
 +
 
 +
CHHABRA, R. & RICHARSON, J. 2008. "Non-Newtonian flow and applied rheology. Engineering applications", Institute of Chemical Engineering.
 +
 
 +
CHHABRA, R. & UHLHERR , P. 1988. "Static equilibrium and motion of spheres in viscoelastic liquid". Encyclopedia of fluid mechanics. Houston: Gulf: In N. P. Cheremisinoff (Ed.).
 +
 
 +
CHIUMENTI, M., CERVERA, M. & CODINA, R. 2013. "A mixed three-field FE formulation for stress accurate analysis including the incompressible limit". Submitted to J. Computer Methods in Applied Mechanics and Engineering.
 +
 
 +
CHIUMENTI, M., VALVERDE, Q., AGELET, C. & CERVERA, M. 2002. "A stabilized formulations for incompresible elasticity using linear displacement and pressure interpolations". J. Computer Methods in Applied Mechanics and Engineering, 191, 5253-5264.
 +
 
 +
DALL´ONDER DOS SANTOS, D., FREY, S., NACCACHE, M. & MENDES, P. R. D. S. 2011. "Numerical approximations for flow of viscoplastic fluid in a lid-driven cavity". J. Non-Newtonian Fluid Mech., 166, 667-679.
 +
 
 +
DE ALMEIDA, B. & FRANCO, B. 1994. "Modeling of dam-break flow", computer modeling of free-surface and pressurized flows".
 +
 
 +
DE SARACIBAR, A., CHIUMENTI, M., VALVERDE, Q. & CERVERA, M. 2006. "On thorthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity". J. Computer Methods in Applied Mechanics and Engineering, 195 (9-12), 1224-1251.
 +
 
 +
DE WAELE, A. 1923. "Viscometry and plastometry". J. Oil Color Chemists’ Assoc., 6 (38), 33-88.
 +
 
 +
DEGLO, D. B., MAGNIN, B. & JAY, P. 2003. "Viscoplastic flow around a cylinder in an infinite medium". J. Non-Newtonian Fluid Mechanics, 115, 27-49.
 +
 
 +
DELINGER, R. & IVERSON, R. 2004. "Granular avalanches across irregular threedimensional terrain: Theory and computatation". J. Geophisical Research, 109.
 +
 
 +
DIEZ, M. & GODOY, L. 1991. "Flujo viscoplástico incompresible de materiales con fricción y cohesión. Aplicación a problemas bidimensionales". Revista Internacional de Métodos Numéricos para Cálculo en Ingeniería".
 +
 
 +
ELLINGWOOD, B., COROTIS, R., BOLAND, J. & JONES, N. 1993. "Assessing cost of dam failure". J. Water Resources Planning and Management, ASCE, Vol. 119, No.1.
 +
 
 +
ELLWOOD, K., GEORGIOU, G., PAPANASTASIOU, T. & WILKES, J. 1990. "Laminar jets of Bingham-Plastic liquids". J. Rheology, 34, 6.
 +
 
 +
FAURE, J. & NAHAS, N. 1961. "Etude numérique et expérimentale díntumescences à forte courbure du front". J. La Houille Blanche, No. 5, 576-586.
 +
 
 +
FAXÉN, O. 1946. "Forces excerted on a rigid cylinder in a viscous fluid between two parallel fixed planes". Proceeding of the Royal Swedish academy of Engineering and Science, 187, 1-13.
 +
 
 +
FORTIN, M. 1972. "Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la méthodes des éléments finis". Tese de Doutorado, l´Unibersité de Paris VI.
 +
 
 +
FREY, S., FILIPE, S. & ZINANI, F. 2010. "Stabilized mixed approximations for inertial viscoplastic fluid flows". J. Mechanical Research Comunications, 37, 145-152.
 +
 
 +
GHIA, U., GHIA, K. & SHIN, C. 1982. "High-Re solutions for incompressible flow using the Navier-Stokes equations and multigrid method". J. Computational Physics, 48, 387-411.
 +
 
 +
GÓMEZ-ARIAS, E., ANDAVERDE, J., SANTOYO, E. & URQUIZA, G. 2009. "Determinación de la viscosidad y su incertidumbre en fluidos de perforación usados en la construcción de pozos geotérmicos: aplicación en el campo de Los Humeros". Revista Mexicana de Ciencias Geológicas. Puebla, México, 26, núm. 2, 516-529.
 +
 
 +
GOREN, S. & WRONSKI, J. 1965. "The shape of low-speed capillary jets of Newtonian liquids". J. Fluid mechanics.
 +
 
 +
GRAY, D. 1974. "Safety of dams-bureau of reclamation". J. Hydraulics Division, ASCE, Vol.100, No. HY2.
 +
 
 +
GRILLET, A., YANG, B., KHOMAMI, B. & SHAQFEH, E. 1999. "Modeling of viscoelastic lid driven ccavity flow using finite elemnt simulations". J. Non-Newtonian Fluid Mechanics, 88, 99-131.
 +
 
 +
GUASH, O. & CODINA, R. 2007. " An algebraic subgrid scale finite elemnt method for the convected Helmholtz equation in two dimensions with applications in aeroacoustics". J. Computer Methods in Applied Mechanics and Engineering.
 +
 
 +
GUO, J. 2011. "Motion of spheres falling through fluids". J. Hydraulics Research, 49, No. 1, 32-41.
 +
 
 +
HAMMAD, K. & VRADIS, G. 1996. "Creeping flow of Bingham plastic through axisymmetric sudden contractions with viscous dissipation". Int. J. Heat Mass Transfer, 39, No. 8, 1555-1567.
 +
 
 +
HAMMAD, K., VRADIS, G. & ÖTÜGEN, M. 2001. "Laminar flow of a Herschel-Bulkley fluid over an axisymetric sudden expansion". J. Fluid Engineering, 123, 588-594.
 +
 
 +
HÄNDLE FRANK (ED) 2007. "Extrusion in ceramic", Springer.
 +
 
 +
HAPPEL, J. & BRENNER, H. (eds.) 1973. "Low Reynolds hydrodinamics", Leyden, The Netherlands: Noordhoff International Publishing.
 +
 
 +
HENCKY, H. 1924. "Uber einige statisch bestimmte Falle des Gleichgewichts in plastisohen Korpern"
 +
 
 +
HERREROS, M. 2004. "Desarrollo de modelos numéricos aplicados a hidráulica ambiental". Ph. D., Universidad Complutense de Madrid.
 +
 
 +
HERSCHEL, W. & BULKLEY, R. 1926. "Measurement of consistency as applied to rubberbenzene solutions. Proceeding of American Society of Testing Material, 26, part. II, 621-633.
 +
 
 +
HILL, R. 1948. J. Iron Steel Institute, 158, 177. HTTP://WWW.COVENPRE.ORG.VE/PRESAS/ELGUAPO.HTM.
 +
 
 +
HUANG, X., LIU, C. & GUNG, H. 1997. "A viscoplastic flow modeling of ceramic tape casting". Material and Manufactunring Process, 12, Nº 5, 935-943.
 +
 
 +
HUGHES, T., FEIJÓO, G., MAZZEI, L. & QUINCY, J. 1998. "The variational multiscale method—a paradigm for computational mechanics". J. Computer Methods in Applied Mechanics and Engineering, 166, 3-24.
 +
 
 +
HUGHES, T., FRANCA, L. & HULBERT, G. 1986. "A new finite element formulations for computational fluid dynamics: VIII. The Galerkin/least-square method for advective-diffusive equations". J. Computer Methods in Applied Mechanics and Engineering, 73, 173-89.
 +
 
 +
JAY, P., MAGNIN, A. & PIAU, J. 2001. "Viscoplastic fluid flow through a sudden axisymmetric expansion". J. AIChE, 47, No. 10, 2155-2166.
 +
 
 +
JELAPAYAN, J., DUNCAN, J. & SEED, H. 1982. "Analyses of flow failure of mine tailing dams". J. Geothecnical Engineering.
 +
 
 +
JELAPAYAN, J., DUNCAN, J. & SEED, H. 1983. "Investigation of flow failure of tailings dams". J. Geothecnical Engineering, 109, 172-189.
 +
 
 +
JIN, M. & FREAD, D. 1997. "One-dimensional routing of mud/debris flows using NWS FLDWAV". 1st International Conference on Debris Flow Hazard Mitigation, 687-696.
 +
 
 +
JOHNSON, A. 1970. "Physical processes in geology". San Francisco: Freeman Cooper.
 +
 
 +
JOSSIC, L. & MAGNIN, A. 2001. "Drag and stability of objects in a yield stress fluid". J. AIChE 47, 2666-2672.
 +
 
 +
KELESSIDIS, V., MAGLIONE, R., TSAMANTAKI, C. & ASPIRTAKIS, Y. 2006. "Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling". J. Petroleum Science and Engineering, 53, 203-224.
 +
 
 +
LARESE DE TETTO, A. 2012. "A coupled eulerian-PFEM model for the simulation of overtopping in rockfilldams". Ph. D, Universidad Politécnica de Cataluña
 +
 
 +
LEE, E. 1984. "Finite deformation effects in plasticity analysis. In numerical analysis of forming processes", Chichester, U. K, Wiley.
 +
 
 +
LIU, B. T., MULLER, SUSAN J., DENN, MORTON M. 2002. "Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere". J. Non-Newtonian Fluid Mechanics, 102, 179-191.
 +
 
 +
 
 +
LUBLINER, J. 1990. "Plasticity theory", New York, NY, Macmillan Publishing Company.
 +
MANDEL, J. 1962. "Ondes platiques dans un mileu indéfini à trois dimensions". J. Mechanics, 1, 30.
 +
 
 +
MANGENEY, A., HEINRICH, P. & ROCHE, R. 2000. "Analytical solution for Testing Debris Avalanche Numerical Models". J. Pure and Applied Geophysics, 157(6), 1081-1096.
 +
 
 +
MASUD, A. & KWACK, J. 2011. "A stabilized mixed finite element method for the incompresible shear-rate dependent non-Newtonian fluids: Variational Multiscale framework and consisten linearization". J. Computer Methods in Applied Mechanics and Engineering, 200, 577-596.
 +
 
 +
MERKAK, O., JOSSIC, L. & MAGNIN, A. 2006. "Spheres and interactions between spheres moving at very low velocities in a yield stress fluid". J. Non-Newtonian Fluid Mechanics, 133, 99-108.
 +
 
 +
MISES, R. 1913. "Mechanik der festen Korper im plastisch deformablen Zustand". Gottinger Nachr, math-phys Kl, 582–592.
 +
 
 +
MISSIRLIS, K., ASSIMACOPOULOS, D., MITSOULIS, E. & R., C. 2001. "Wall effect for motion of spheres in power-law fluids". J. Non-Newtonian Fluid Mechanics., 96, 459-471.
 +
 
 +
MITSOULIS, E. 1998. "Three-dimensional non-Newtonian computation of extrudate swell the finite element method". J. Computer Methods in Applied Mechanics and Engineering, 180, 333-344.
 +
 
 +
MITSOULIS, E. 2004. "On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects". J. Chemical Engineering Science, 59, 789-800.
 +
 
 +
MITSOULIS, E. 2007. Annular extrudate swell of pseudoplastic and viscoplastic fluids. J. Non-Newtonian Fluid Mechanics, 141, 138-147.
 +
 
 +
MITSOULIS, E. & GALAZOULAS, S. 2009. "Simulation of viscoplastic flow past cylinders in tubes". J. Non-Newtonian Fluid Mechanics, 158, 132-141.
 +
 
 +
MITSOULIS, E. & HUILGOL, R. 2003. "Entry flows of Bingham plastic in expansions". J. Non-Newtonian Fluid Mechanic., 122, 45-54.
 +
 
 +
MITSOULIS, E. & ZISIS, T. 2001. "Flow of Bingham plastics in a lid-driven square cavity". J. Non-Newtonian fluid mechanics, 101, 173-180.
 +
 
 +
NEOFYTOU, P. (ed.) 2005. "A 3rd order upwind finite volume method for generalized Newtonian fluid flow".
 +
 
 +
NICKELL, R. & TANNER, R. 1974. "The solution of viscous incompressible jet and freesurface flows using finite-elemnt methods". J. Fluid mechanics, 65, part 1, 189-206.
 +
 
 +
OLDROYD, J. 1947. "Proc. Camb. Philos.", Soc.
 +
 
 +
OÑATE, E. 1980. "La formulación del flujo viscoplástico y sus diversas aplicaciones prácticas por el método de los elementos finitos". Revista de Obras Públicas, Febrero-Marzo, 115-129.
 +
 
 +
OSTWALD, W. 1925. "Ueber die geschwindigkeitsfunktion derviskosit¨at disperser systeme. (The velocity function of viscosity of disperse systems)". Kolloid Z, 36, 99-117.
 +
 
 +
PAKDEL, P., SPIEGELBERG, S. & MCKINLEY, G. 1997. "Cavity flows of elastic liquids: two-dimensional flows". J. Physics fluids, 9, 3123-3140.
 +
 
 +
PANDA, S. & CHHABRA, R. 2010. "Laminar flow of power-law fluids past a rotating cylinder". J. Non-Newtonian Fluid Mechanics, 165, 1442-1461.
 +
 
 +
PAPANASTASIOU, T. 1987. "Flow of material with yield". Jl Rheology, 36, 389-407.
 +
 
 +
PARI, H., MARTINS-COSTA, M., FONSECA, C. & FREY, S. 2010. "A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by extra stresspressure-velocity Galerkin least-squares method". Editor: Mónica Feijo Naccache, XXXII, No. 5.
 +
 
 +
PASTOR, M., QUECEDO, M., M., H., MERODO, J., FERNANDEZ, J. & MIRA, P. 2004. "Simple aproximation to bottom friction for Bingham fluid depth integrated models". J. Hydraulic Engineering, 130, núm. 2, 149-155.
 +
 
 +
PERIĆ, D. & SLIJECPČEVIĆ, S. 2001. "Computational modelling of viscoplastic fluids based on a stabilised finite element method". In: PRESS, M. U. (ed.) Engiennering computations.
 +
 
 +
PHAN-THIEN, N. & DOU, H. 1999. "Viscoelástic flow past a cylinder: Drag coefficient". J. Computer Methods in Applied Mechanics and Engineering, 180, 243-266.
 +
 
 +
PIAU, J. 2002. "viscoplastic boundary layer". J. Non-Newtonian Fluid Mechanics, 102, 193-208.
 +
 
 +
PIERSON, T. & COSTA, J. 1987. "A rheological classificaton of subaerial sediment-water flows". Review in Engineering Geology. American Geological Society.
 +
 
 +
PLANAS, R., BADÍA, S. & CODINA, R. 2011. "Aproximation of the inductionless MHD problem using a stabilized finite element method". J. Computational Physics, 230 (2011), 1281-1303.
 +
 
 +
PRAGER, W. 1961. "Introduction to mechanics of continua", Boston, Ginn.
 +
 
 +
PRANDTL, L. 1920. "Über die härte plastischer Körper. . Göttinger Nachrichten, 74–85.
 +
 
 +
PRINCIPE, J. 2008. "Subgrid scale stabilizad finite elements for low speed flows". Universitat Politècnica de Catalunya.
 +
 
 +
PUTZ, A., BURGHELEA, T. & MARTINEZ, D. 2008. "Settling of an insolated sphericalparticule in a yield stress shear thinning fluid". J. Physics of fluids, 20.
 +
 
 +
REDDY, K. & TANNER, R. 1977. "Finite Element approach to die-swell problem of non.Newtonian fluids". Fluid Mechanics Conference. Australia.
 +
 
 +
REINER, E. 1958. "Handbuch der phisik", Berlin, Springer-Verlag.
 +
 
 +
REYNOLDS, O. 1985. "On the dilatancy of media composed of rigid particles in contact". Philos. Mag,.
 +
 
 +
RITTER, A. (ed.) 1892. "Die Fortpflanzung der Wasserwellen".
 +
 
 +
ROQUET, N. & SARAMITO, P. 2003. "An adaptive finite element method for Bingham fluid flows around a cylinder". J. Computer Methods in Applied Mechanics and Engineering, 192, 3317-3341.
 +
 
 +
SANJAY, M. & JAYARAMAN, K. 2002. "Asymmetic flows in planar symmetric channel with large expansion ratio". Int. J. for Numerical Method in Fluids, 38, 945-962.
 +
 
 +
SAVAGE, S. & HUTTER, K. 1989. "The dynamic of avalanches of granular material down from initiation to runout". J. Fluid Mech., 199, 177-215.
 +
 
 +
SCOTT, P., MIRZA, F. & VLACHOPOULOS 1988. "Finite-element simulation of laminar viscoplastic flows with regios of recirculations". J. Rheology, 32, 387-400.
 +
 
 +
SCHLICHTING, H. 1968. "Boundary layer theory", McGraw Hill.
 +
 
 +
SCHOKLITSCH, A. 1917. "Über dambruchwellen", Vienna.
 +
 
 +
SHAPIRA, M., DEGANI, D. & WEIHS, D. 1990. "Stability and existence of multiple solutions for viscou flow in suddenly enlarged channel". Computers and Fluids, 18, 239-258.
 +
 
 +
SIVAKUMAR, P., BHARTI, R. & CHHABRA, R. 2006. "Effect of power-law index on critical parameter for power-law across an unconfined circular cylinder". J. Chemical Engineering Science, 61, 6035-6046.
 +
 
 +
SIVAKUMAR, P., BHARTI RAM PRAKASH Y CHHABRA R. P. 2006. "Effect of powerlaw index on critical parameter for power-law across an unconfined circular cylinder". Chemical Engineering Science, 61, 6035-6046.
 +
 
 +
SLIJECPČEVIĆ, S. & D., P. 2004. "Some aspects of computational modelling of non-Newtonian fluids based on stbilised finite elemt method". In: EDS.), W. R. Y. P. L. Q. A. (ed.) Eurpean Congress on Computational Methods in Applied Science and Engineering. Jyvaskyla: P. Neittaaanmaki, T. Rossi, K. Majava, y O. Pironneau (eds.).
 +
 
 +
SOUZA, M. P. R. & DUTRA, E. S. S. 2004. "Viscosity function for yield-stress liquids". Appl. Rheol., 14, 296-302.
 +
 
 +
STOKER, J. 1957. "Water wave. The mathematical theory with aplications", New York, USA, Intersciences Publishers.
 +
 
 +
STOKES, G. 1851 "On the effect of the internal friction of fluids on the motion of pendulums". Trans. Cambridge Philos. Soc. 9, 8. Reprinted in G. Stokes, Larmor y J. Rayleigh, Mathematical and Physical Papers (Cambridge University Press, Cambridge
 +
 
 +
TABUTEAU, H. & COUSSOT, P. 2007. "Drag force on a sphere in steady motion through a yield-stress fluid". J. Rheology, 5 (1), 125-137.
 +
 
 +
TAKAHASHI, T. (ed.) 2007. "Debris flow: Mechanics, prediction and countermeasures", London, UK: Taylor & Francis Group.
 +
 
 +
TANG, G., WANG, S. & TAO, W. 2011. "Bingham fluid simulation with the incompressible lattice Boltzmann model". J. Non-Newtonian Fluid Mech., 166, 145-151.
 +
 
 +
TANNER, R. (ed.) 1988. "Engineering Rheology": Oxford University Press.
 +
 
 +
TANNER, R. 1992. "Engineering rhelogy", Oxford, Oxford Science Publications.
 +
 
 +
TANNER, R. 1993. "Stoke paradox for power-law fluid around cylinder". J. Non-Newtonian Fluid Mechanic, 50, 217-224.
 +
 
 +
TANNER, R. 2000. "Engineering rheology", Oxford University Press.
 +
 
 +
TANNER, R. & MILTHORPE 1983. "Numerical simulation of flow fluids with yield stress", Num. meth. lam. turb. flow". In: EDS. C. TAYLOR, J. A. J. A. W. R. S. (ed.) Proc. 3rd Int. Conf., Scattle. Swasea, UK: Pineridge Press.
 +
 
 +
VALENTIC, L. & EWHITMORE, R. 1965. "The terminal velocity of sphere in Bingham plastics". Brit. J. Applied Physic, 16, 1197-1203.
 +
 
 +
VAN DYKE, M. (ed.) 1964. "Perturbation methods in fluid mechanics", New York: Academic Press.
 +
 
 +
VOELLMY, A. 1955. "Über di e Zer störungskraft v on Law inen". Schweizerische Bauzeitung, 73, 212-285.
 +
 
 +
VOLA, D., BOSCARDIN, L. & LATCHÉ, J. 2003. "Laminar unsteady flows of Bingham fluids:a numerical strategy and some benchmark results". J. Computational Physics, 187, 441-456.
 +
 
 +
VOLAROVICH, M. & GUTKIN, A. 1953. "Theory of flow in a viscoplastic medium". J. Colloid, 15, 153-159.
 +
 
 +
WALTERS, K. & TANNER, R. 1992. "The motion of a sphere through an elastic liquid". Transport processes in bubbles, drops and particles. New York: Hemisphere: In R. P. Chhabra, y D. DeKee (Ed.).
 +
 
 +
WEISSENBERG, K. 1949. Proc. 1st Intern. Congr. Rheology, Amsterdam.
 +
 
 +
WESTERBERG, L., LUNDSTRÖM, T., HÖGLUND, E. & LUGT, P. M. 2010. "Investigation of grease flow in a rectangular channel including wall slip effects using microparticle image velocimetry". Tribology Transaccions.
 +
 
 +
YANO, K. & DAIDO, A. 1965. "Fundamental study on mud.flow: Bull". DPRI, 69-83.
 +
 
 +
YOSHIOKA, N. & ADACHI, K. 1971a. "On variational principles for a non-Newtonian fluid". J. Chemical Engineering Japan, 4, 217-220.
 +
 
 +
YOSHIOKA, N., ADACHI, K. & ISHIMURA, H. 1971b. "On creeping flow of a viscoplastic fluid past a sphere". Kagaku Kogaku, 10, 1144-1152.
 +
 
 +
ZIENKIEWICZ, O. & GODBOLE, P. 1975. "Viscous, Incompresible Flow with Special Reference to Non-Newtonian (plastic) Fluids", from Finite Element in fluids.
 +
 
 +
ZIENKIEWICZ, O., JAIN, P. & OÑATE, E. 1978. "Flow of solids during forming and extrusion: some aspect of numerical solutions". Int. J. Solids Struct., 14, 15-38.
 +
 
 +
ZISIS, T. & MITSOULIS, E. 2002. "viscoplastic flow around a cylinder kept between parallel plates". J. Non-Newtonian Fluid Mechanics, 105, 1-20.

Latest revision as of 10:06, 11 June 2019

Resumen

El objetivo de este trabajo es formular y evaluar una metodología para la resolución de las ecuaciones de Navier-Stokes para los fluidos viscoplásticos de Bingham y de Herschel-Bulkley mediante el método de los elementos finitos mixtos estabilizados velocidad/presión. Se desarrolla una formulación teórica, se realiza la implementación computacional y se presentan y evalúan soluciones numéricas para estos fluidos viscoplásticos.

Los fluidos viscoplásticos se caracterizan por presentar una tensión de corte mínima, denominada tensión de fluencia. Por encima de esta tensión de corte mínima el fluido comienza a moverse. En caso de no superarse esta tensión de fluencia, el fluido se comporta como un cuerpo rígido o quasi-rígido, con velocidad de deformación nula.

Se presentan inicialmente las ecuaciones de Navier-Stokes para un fluido y dos fluidos incompresibles e inmiscibles considerando superficie libre. Se presenta una revisión de los modelos reológicos Newtonianos y los modelos no-Newtonianos. Se hace una descripción detallada de los modelos viscoplásticos. Se describen los modelos viscoplásticos regularizados de Papanastasiou. Se proponen modelos regualarizados de doble viscosidad como alternativa a los comúnmente usados.

Se deducen las soluciones analítica en flujos paralelos para el fluido Newtoniano, el fluido de Bingham, de Herschel-Bulkley, el fluido pseudoplástico y dilatante.

Se desarrolla el modelo discreto, así como la formulación estabilizada con los métodos de subescalas algebraica (Algebraic subgrid scale, ASGS), de subescalas ortogonales (Orthogonal subgrid scale, OSS) y de subescalas ortogonales con la presión y el termino convectivo desacoplados, split-OSS. En el caso del fluido con superficie libre se presenta el método euleriano simplificado, el cual usa el método de superficie de nivel level set para resolver el movimiento de esta superficie libre.

Se presenta un estudio de convergencia con los métodos de estabilización OSS y ASGS en los flujos paralelos de Bingham y de Herschel-Bulkley. Los modelos regularizados se doble viscosidad muestran menor error de convergencia que los usados regularmente.

Se presentan las soluciones numéricas desarrolladas en este trabajo para un amplio conjunto de problemas benchmark. Pueden dividirse en tres grupos: flujos de Bingham, flujos de Herschel-Bulkley y flujos con superficie libre. Las soluciones obtenidas validan la metodología propuesta en este trabajo de investigación comparándose muy bien con las soluciones analíticas, numéricas, con resultados experimentales y datos de campo.

La metodología propuesta en este trabajo proporciona una herramienta computacional para estudiar flujos viscoplásticos confinados, muy comunes en la industria, y los flujos detríticos viscoplásticos con superficie libre.


The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

ABDALI, S. & MITSOULIS, E. 1992. "Entry and exit flows of Bingham fluids". J. Rheology, 36(2).

AHMED, A. & ALEXANDROU, A. 1994. "Processing of semi-solid materials using a shearthickening Bingham fluid model". J. Non-Newtonian Fluid Mechanics, ASME publication No. FED-179, 83-89.

ALEXANDER, J. 1961. "On complete solution for frictionless extrusion in plane strain". Q. J. Applied Mathematic, 19, 31-40.

ALEXANDROU, A., MCGILVREAY, T. & BURGOS, G. 2001. "Steady Herschel–Bulkley fluid flow in three-dimensional expansions". J. Non-Newtonian Fluid Mechanics, 100, 77-96.

ALLEBORN, K., NANDAKUMAR, K., RASZILLIER, H. & DURST, F. 1997. "Further contributions on the two-dimensional flow in a sudden expansion". J. Fluid Mechanical, 330, 169-188.

ANDRES, V. 1960. "Equilibrium and motion of a sphere in a viscoplastic fluid". Dokl. Akad. Nauk SSSR, 133, 777-780.

ANSLEY, R. & SMITH, T. 1967. "Motion of spherical particules in a Bingham plastic". J. A I Ch E, 13, 1193-1196.

ATAPATTU, D., CHHABRA, R. & UHLHERR, P. 1990. "Wall effect for spheres falling at small reynolds number in a viscoplastic medium". J. Non-Newtonian Fluid Mechanics, 38, 31-42.

ATAPATTU, D., CHHABRA, R. & UHLHERR, P. 1995. "Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag". J. Non-Newtonian Fluid Mechanics, 59, 245-265.

AZOUZ, U., SHIRAZI, S. & AZAR, J. 1993. "Numerical simulation of laminar flows of yiel-power law fluids in conduits of arbitrary cross-section". J. Fluid Engineering, 115, 710-716.

BADÍA, S. & CODINA, R. 2009. "Unified satbilized finite elemnt formulation for the Stokes and Darcy problems". SIAM J. Numerical analysis, 47, 1971-2000.

BAGNOL, R. 1954. "Experiment on a gravity free dispersión of large solid spheres in a newtonian fluid under shear". Proceeding of the Royal Society of London., A 225, 49-63.

BARNES, H. ‘‘The yield stress myth? Revisited’’. In: MOLDENAERS & KEUNINGS, P. A., eds. Proc. XIth Int. Congr. Rheology, 1992 Brussels, Belgium. Elsevier, Amsterdam, 576-578.

BARNES, H. 1997. "Thixotropy-a review". J. Non-Newtonian Fluid Mech., 70, 1.

BARNES, H. & WALTERS, K. 1985. ‘‘The yield stress myth?’’. Rheology Acta 24.

BATCHELOR, J. & HORSFALL, F. 1973. "Die swell in elastic and viscous fluids". Research Report No. 189. Rubber and Plastic Research Assoc. of Grain Britain.

BEAULNE, M. & MITSOULIS, E. 1997. "Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids". J. Non-Newtonian fluid mechanics, 72, 55-71.

BERCOVIER, M. & ENGELMAN, M. 1980. "A finite-element method for incompressible non-Newtonian flows". J. Computational Physics, 36, 313-326.

BERIS, A. N., TSAMOPOULOS, J. A., ARMSTRONG, R. C. & BROWN, R. A. 1985. "Creeping motions of sphere through a Bingham Plastic". J. Fluid Mechanical, 158, 219-244.

BHARTI, R., CHHABRA, R. & ESWARAN, V. 2006. "Steady flow of power law fluids across a circular cylinder". The Canadian Journal of Chemical Engineering, 84, 406-421.

BINGHAM, E. 1922. "Fluidity and plasticity", New York, McGraw-Hill.

BIRD, R., ARMSTRONG, R. & HASSAGER, O. 1987. "Dynamics of polymeric liquids", Wiley.

BIRD, R., DAI, G. & YARUSSO, B. 1983. "Rheology and flow of viscoplastic materials". Reviews Chemical Enginnering, 1, 1-70.

BLACKERY, J. & MITSOULIS, E. 1997. "Creeping motion of a sphere in tubes filled with a Bingham plastic material". J. Non-Newtonian Fluid Mechanics, 70, 59-77.

BOTELLA, O. & PEYRET, R. (eds.) 1998. "Benchmark spectral results on the lid_driven cavity flow", Great Britain: Elseiver.

BOZKUS, Z. & KASAP, A. 1998. "Comparison of physical and numerical dam-break simulations". Tr. J. Engineering and Environmental Science, 22, 429 -443.

BREZZI, F. & FORTIN, M. 1991. "Mixed and Hibrid Finite Element Methods", Springer Verlag.

BREZZI, F. & PITKÄRANTA, J. 1984. "On the stabilization of finite element approximations of Stokes equations". In: HACKBUSH, W. (ed.) Efficient Solution of Elliptic Systems. Vieweg, Braunschweig.

BROOKS, A., HUGHES, T. & RUSSO, A. 1982. "Streamlines Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompresible Navier-Stokes Equation". J. Computer Methods in Applied Mechanics and Engineering, 32, 199-259.

BURGOS, G. & ALEXANDROU, A. 1999. "Flow development of Herschel-Bulkley fluis in a sudden three-dimensional square expansion". J. Rheology.

CASSON, N. 1959. "Rhelogy of disperse system", New York, Ed. C. C. Mill, Pergamon Press.

CERVERA, M. & CHIUMENTI, M. 2009. "Size effect and localization in J2 plasticity". Int. J. Solids and Structures, 46(17), 3301-3312.

CERVERA, M., CHIUMENTI, M. & CODINA, R. 2010a. "Mixed stabilied finite element methods in nonlinear solid mechanics. Part I: Formulation". J. Computer Methods in Applied Mechanics and Engineering, 46 (17), 3301-3312.

CERVERA, M., CHIUMENTI, M. & CODINA, R. 2010b. "Mixed stabilied finite element methods in nonlinear solid mechanics. Part II: Strain localization". J. Computer Methods in Applied Mechanics and Engineering, 199 (37-40), 2571-2589.

CERVERA, M., CHIUMENTI, M. & CODINA, R. 2011. "Mesh objetive modeling of cracks using continuos linear strain and displacement interpolations". Int. J. Numerical Methods in Enginnering, 87 (10), 962-987.

CERVERA, M., CHIUMENTI, M. & DE SARACIBAR, A. 2004a. "Shear band localization via local J2 continuum damage mechanics". J. Computer Methods in Applied Mechanics and Engineering, 193, 849-880.

CERVERA, M., CHIUMENTI, M. & DE SARACIBAR, A. 2004b. "Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity". Int. J. for Numerical and Analytical Methods in Geomechanics, 28, 373-393.

CERVERA, M., CHIUMENTI, M. & DI CAPUA, D. 2012. "Benchmarking on bifurcación and localization in J2 plasticity for plane strain conditions". J. Computer Methods in Applied Mechanics and Engineering, 241-244, 206-224.

CERVERA, M., CHIUMENTI, M., VALVERDE, Q. & DE SARACIBAR, A. 2003. "A mixed linear/linear simplicial elements for incompressible elasticity and plasticity". J. Computer Methods in Applied Mechanics and Engineering, 192 (49-50), 5253-5264.

CODINA, R. 2000a. "On stabilized finite element methods for linear systems of convection–diffusion-reaction equations". J. Computer Methods in Applied Mechanics and Engineering, 188, 61-82.

CODINA, R. 2000b. "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods". J. Computer Methods in Applied Mechanics and Engineering, 190, 1579-1599.

CODINA, R. 2000c. "Stabilized finite element approximation of transient incompresible flows using orthogonal subscale". CIMNE.

CODINA , R. 2001. "A stabilized finite element method for generalized stationary incompressible flows". J. Compu. Methods in Applied Mechanics and Engineering, 190, 2681-2706.

CODINA, R. 2002. "Stabilized finite element approximation of transient incompressible flows using orthogonal scale". J. Computer Methods in Applied Mechanics and Engineering, 191, 4295-4321.

CODINA, R. & BLASCO, J. 1997. "A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation". J. Computer Methods in Applied Mechanics and Engineering, 143, 373-391.

CODINA, R., HOUZEAUX, G., COPPOLA-OWEN, H. & BAIGE, J. 2009a. "The fixedmesh ALE approach for the numerical approximation of flow in moving domains". J. Computational Physics. Elseiver.

COPPOLA-OWEN, H. 2009b. "A fine element model for free surface and two fluid flows on fixed meshes". Ph. D, Universidad Politécnica de Cataluña.

COPPOLA-OWEN, H. & CODINA, R. 2005. "An improved level-set approach using finite elements wiyh discontinuous gradient pressure shape functios". In: BERGAN P., G. J., OÑATE E., KVAMSDAL (ed.) International Conference on Computational Methods in Marine Engineering MARINE 2005.

COVEY, G. & STANMORE, B. 1981. "Use of parallel-plate plastometer for the characterization of viscous fluid with a yield stress". J. Non-Newtonian Fluid Mechanics, 8, 249-260.

CROCHET, M. & KEUNINGS, R. 1982. "On numerical die swell calculation. J. Non-Newtonian Fluid Mechanics.

CHANSON, H. 2004b. "Environmental hydraulic of open channel flows", Oxford, UK, Elseiver Butterwortj-Heinemann.

CHANSON, H. 2005a. "Aplications of the saint-venant equations and method of characterístic to the dam break wave problem".

CHANSON, H. "Analytical solution of dam break wave with flow resistence. Application to tsunami surges". In: B. H. JUN, S. I. L., I. W. SEO Y G. W. CHOI. EDITORS, ed. Proc. 31th Biennal IAHR Congress, 2005b Seoul, Korea. Theme D1, Paper 0137, pp. 3341-3353.

CHHABRA, R. 1986. "Steady Non-Newtonian flow about a rigid sphere". Encyclopedia of fluid mechanics. Houston: Gulf: In N. P. Cheremisinoff (Ed.)

CHHABRA, R. (ed.) 1993. "Bubles, drops and particles in Non-Newtonian fluid", Boca Raton, FL: CRC Press.

CHHABRA, R., RAMI, K. & UHLHERR, P. 2001. "Drag on cylinder in shear thinning viscoelastic liquids". J. Chemical Engineering Science, 56, 2221-2227.

CHHABRA, R. & RICHARSON, J. 2008. "Non-Newtonian flow and applied rheology. Engineering applications", Institute of Chemical Engineering.

CHHABRA, R. & UHLHERR , P. 1988. "Static equilibrium and motion of spheres in viscoelastic liquid". Encyclopedia of fluid mechanics. Houston: Gulf: In N. P. Cheremisinoff (Ed.).

CHIUMENTI, M., CERVERA, M. & CODINA, R. 2013. "A mixed three-field FE formulation for stress accurate analysis including the incompressible limit". Submitted to J. Computer Methods in Applied Mechanics and Engineering.

CHIUMENTI, M., VALVERDE, Q., AGELET, C. & CERVERA, M. 2002. "A stabilized formulations for incompresible elasticity using linear displacement and pressure interpolations". J. Computer Methods in Applied Mechanics and Engineering, 191, 5253-5264.

DALL´ONDER DOS SANTOS, D., FREY, S., NACCACHE, M. & MENDES, P. R. D. S. 2011. "Numerical approximations for flow of viscoplastic fluid in a lid-driven cavity". J. Non-Newtonian Fluid Mech., 166, 667-679.

DE ALMEIDA, B. & FRANCO, B. 1994. "Modeling of dam-break flow", computer modeling of free-surface and pressurized flows".

DE SARACIBAR, A., CHIUMENTI, M., VALVERDE, Q. & CERVERA, M. 2006. "On thorthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity". J. Computer Methods in Applied Mechanics and Engineering, 195 (9-12), 1224-1251.

DE WAELE, A. 1923. "Viscometry and plastometry". J. Oil Color Chemists’ Assoc., 6 (38), 33-88.

DEGLO, D. B., MAGNIN, B. & JAY, P. 2003. "Viscoplastic flow around a cylinder in an infinite medium". J. Non-Newtonian Fluid Mechanics, 115, 27-49.

DELINGER, R. & IVERSON, R. 2004. "Granular avalanches across irregular threedimensional terrain: Theory and computatation". J. Geophisical Research, 109.

DIEZ, M. & GODOY, L. 1991. "Flujo viscoplástico incompresible de materiales con fricción y cohesión. Aplicación a problemas bidimensionales". Revista Internacional de Métodos Numéricos para Cálculo en Ingeniería".

ELLINGWOOD, B., COROTIS, R., BOLAND, J. & JONES, N. 1993. "Assessing cost of dam failure". J. Water Resources Planning and Management, ASCE, Vol. 119, No.1.

ELLWOOD, K., GEORGIOU, G., PAPANASTASIOU, T. & WILKES, J. 1990. "Laminar jets of Bingham-Plastic liquids". J. Rheology, 34, 6.

FAURE, J. & NAHAS, N. 1961. "Etude numérique et expérimentale díntumescences à forte courbure du front". J. La Houille Blanche, No. 5, 576-586.

FAXÉN, O. 1946. "Forces excerted on a rigid cylinder in a viscous fluid between two parallel fixed planes". Proceeding of the Royal Swedish academy of Engineering and Science, 187, 1-13.

FORTIN, M. 1972. "Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la méthodes des éléments finis". Tese de Doutorado, l´Unibersité de Paris VI.

FREY, S., FILIPE, S. & ZINANI, F. 2010. "Stabilized mixed approximations for inertial viscoplastic fluid flows". J. Mechanical Research Comunications, 37, 145-152.

GHIA, U., GHIA, K. & SHIN, C. 1982. "High-Re solutions for incompressible flow using the Navier-Stokes equations and multigrid method". J. Computational Physics, 48, 387-411.

GÓMEZ-ARIAS, E., ANDAVERDE, J., SANTOYO, E. & URQUIZA, G. 2009. "Determinación de la viscosidad y su incertidumbre en fluidos de perforación usados en la construcción de pozos geotérmicos: aplicación en el campo de Los Humeros". Revista Mexicana de Ciencias Geológicas. Puebla, México, 26, núm. 2, 516-529.

GOREN, S. & WRONSKI, J. 1965. "The shape of low-speed capillary jets of Newtonian liquids". J. Fluid mechanics.

GRAY, D. 1974. "Safety of dams-bureau of reclamation". J. Hydraulics Division, ASCE, Vol.100, No. HY2.

GRILLET, A., YANG, B., KHOMAMI, B. & SHAQFEH, E. 1999. "Modeling of viscoelastic lid driven ccavity flow using finite elemnt simulations". J. Non-Newtonian Fluid Mechanics, 88, 99-131.

GUASH, O. & CODINA, R. 2007. " An algebraic subgrid scale finite elemnt method for the convected Helmholtz equation in two dimensions with applications in aeroacoustics". J. Computer Methods in Applied Mechanics and Engineering.

GUO, J. 2011. "Motion of spheres falling through fluids". J. Hydraulics Research, 49, No. 1, 32-41.

HAMMAD, K. & VRADIS, G. 1996. "Creeping flow of Bingham plastic through axisymmetric sudden contractions with viscous dissipation". Int. J. Heat Mass Transfer, 39, No. 8, 1555-1567.

HAMMAD, K., VRADIS, G. & ÖTÜGEN, M. 2001. "Laminar flow of a Herschel-Bulkley fluid over an axisymetric sudden expansion". J. Fluid Engineering, 123, 588-594.

HÄNDLE FRANK (ED) 2007. "Extrusion in ceramic", Springer.

HAPPEL, J. & BRENNER, H. (eds.) 1973. "Low Reynolds hydrodinamics", Leyden, The Netherlands: Noordhoff International Publishing.

HENCKY, H. 1924. "Uber einige statisch bestimmte Falle des Gleichgewichts in plastisohen Korpern"

HERREROS, M. 2004. "Desarrollo de modelos numéricos aplicados a hidráulica ambiental". Ph. D., Universidad Complutense de Madrid.

HERSCHEL, W. & BULKLEY, R. 1926. "Measurement of consistency as applied to rubberbenzene solutions. Proceeding of American Society of Testing Material, 26, part. II, 621-633.

HILL, R. 1948. J. Iron Steel Institute, 158, 177. HTTP://WWW.COVENPRE.ORG.VE/PRESAS/ELGUAPO.HTM.

HUANG, X., LIU, C. & GUNG, H. 1997. "A viscoplastic flow modeling of ceramic tape casting". Material and Manufactunring Process, 12, Nº 5, 935-943.

HUGHES, T., FEIJÓO, G., MAZZEI, L. & QUINCY, J. 1998. "The variational multiscale method—a paradigm for computational mechanics". J. Computer Methods in Applied Mechanics and Engineering, 166, 3-24.

HUGHES, T., FRANCA, L. & HULBERT, G. 1986. "A new finite element formulations for computational fluid dynamics: VIII. The Galerkin/least-square method for advective-diffusive equations". J. Computer Methods in Applied Mechanics and Engineering, 73, 173-89.

JAY, P., MAGNIN, A. & PIAU, J. 2001. "Viscoplastic fluid flow through a sudden axisymmetric expansion". J. AIChE, 47, No. 10, 2155-2166.

JELAPAYAN, J., DUNCAN, J. & SEED, H. 1982. "Analyses of flow failure of mine tailing dams". J. Geothecnical Engineering.

JELAPAYAN, J., DUNCAN, J. & SEED, H. 1983. "Investigation of flow failure of tailings dams". J. Geothecnical Engineering, 109, 172-189.

JIN, M. & FREAD, D. 1997. "One-dimensional routing of mud/debris flows using NWS FLDWAV". 1st International Conference on Debris Flow Hazard Mitigation, 687-696.

JOHNSON, A. 1970. "Physical processes in geology". San Francisco: Freeman Cooper.

JOSSIC, L. & MAGNIN, A. 2001. "Drag and stability of objects in a yield stress fluid". J. AIChE 47, 2666-2672.

KELESSIDIS, V., MAGLIONE, R., TSAMANTAKI, C. & ASPIRTAKIS, Y. 2006. "Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling". J. Petroleum Science and Engineering, 53, 203-224.

LARESE DE TETTO, A. 2012. "A coupled eulerian-PFEM model for the simulation of overtopping in rockfilldams". Ph. D, Universidad Politécnica de Cataluña

LEE, E. 1984. "Finite deformation effects in plasticity analysis. In numerical analysis of forming processes", Chichester, U. K, Wiley.

LIU, B. T., MULLER, SUSAN J., DENN, MORTON M. 2002. "Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere". J. Non-Newtonian Fluid Mechanics, 102, 179-191.


LUBLINER, J. 1990. "Plasticity theory", New York, NY, Macmillan Publishing Company. MANDEL, J. 1962. "Ondes platiques dans un mileu indéfini à trois dimensions". J. Mechanics, 1, 30.

MANGENEY, A., HEINRICH, P. & ROCHE, R. 2000. "Analytical solution for Testing Debris Avalanche Numerical Models". J. Pure and Applied Geophysics, 157(6), 1081-1096.

MASUD, A. & KWACK, J. 2011. "A stabilized mixed finite element method for the incompresible shear-rate dependent non-Newtonian fluids: Variational Multiscale framework and consisten linearization". J. Computer Methods in Applied Mechanics and Engineering, 200, 577-596.

MERKAK, O., JOSSIC, L. & MAGNIN, A. 2006. "Spheres and interactions between spheres moving at very low velocities in a yield stress fluid". J. Non-Newtonian Fluid Mechanics, 133, 99-108.

MISES, R. 1913. "Mechanik der festen Korper im plastisch deformablen Zustand". Gottinger Nachr, math-phys Kl, 582–592.

MISSIRLIS, K., ASSIMACOPOULOS, D., MITSOULIS, E. & R., C. 2001. "Wall effect for motion of spheres in power-law fluids". J. Non-Newtonian Fluid Mechanics., 96, 459-471.

MITSOULIS, E. 1998. "Three-dimensional non-Newtonian computation of extrudate swell the finite element method". J. Computer Methods in Applied Mechanics and Engineering, 180, 333-344.

MITSOULIS, E. 2004. "On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects". J. Chemical Engineering Science, 59, 789-800.

MITSOULIS, E. 2007. Annular extrudate swell of pseudoplastic and viscoplastic fluids. J. Non-Newtonian Fluid Mechanics, 141, 138-147.

MITSOULIS, E. & GALAZOULAS, S. 2009. "Simulation of viscoplastic flow past cylinders in tubes". J. Non-Newtonian Fluid Mechanics, 158, 132-141.

MITSOULIS, E. & HUILGOL, R. 2003. "Entry flows of Bingham plastic in expansions". J. Non-Newtonian Fluid Mechanic., 122, 45-54.

MITSOULIS, E. & ZISIS, T. 2001. "Flow of Bingham plastics in a lid-driven square cavity". J. Non-Newtonian fluid mechanics, 101, 173-180.

NEOFYTOU, P. (ed.) 2005. "A 3rd order upwind finite volume method for generalized Newtonian fluid flow".

NICKELL, R. & TANNER, R. 1974. "The solution of viscous incompressible jet and freesurface flows using finite-elemnt methods". J. Fluid mechanics, 65, part 1, 189-206.

OLDROYD, J. 1947. "Proc. Camb. Philos.", Soc.

OÑATE, E. 1980. "La formulación del flujo viscoplástico y sus diversas aplicaciones prácticas por el método de los elementos finitos". Revista de Obras Públicas, Febrero-Marzo, 115-129.

OSTWALD, W. 1925. "Ueber die geschwindigkeitsfunktion derviskosit¨at disperser systeme. (The velocity function of viscosity of disperse systems)". Kolloid Z, 36, 99-117.

PAKDEL, P., SPIEGELBERG, S. & MCKINLEY, G. 1997. "Cavity flows of elastic liquids: two-dimensional flows". J. Physics fluids, 9, 3123-3140.

PANDA, S. & CHHABRA, R. 2010. "Laminar flow of power-law fluids past a rotating cylinder". J. Non-Newtonian Fluid Mechanics, 165, 1442-1461.

PAPANASTASIOU, T. 1987. "Flow of material with yield". Jl Rheology, 36, 389-407.

PARI, H., MARTINS-COSTA, M., FONSECA, C. & FREY, S. 2010. "A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by extra stresspressure-velocity Galerkin least-squares method". Editor: Mónica Feijo Naccache, XXXII, No. 5.

PASTOR, M., QUECEDO, M., M., H., MERODO, J., FERNANDEZ, J. & MIRA, P. 2004. "Simple aproximation to bottom friction for Bingham fluid depth integrated models". J. Hydraulic Engineering, 130, núm. 2, 149-155.

PERIĆ, D. & SLIJECPČEVIĆ, S. 2001. "Computational modelling of viscoplastic fluids based on a stabilised finite element method". In: PRESS, M. U. (ed.) Engiennering computations.

PHAN-THIEN, N. & DOU, H. 1999. "Viscoelástic flow past a cylinder: Drag coefficient". J. Computer Methods in Applied Mechanics and Engineering, 180, 243-266.

PIAU, J. 2002. "viscoplastic boundary layer". J. Non-Newtonian Fluid Mechanics, 102, 193-208.

PIERSON, T. & COSTA, J. 1987. "A rheological classificaton of subaerial sediment-water flows". Review in Engineering Geology. American Geological Society.

PLANAS, R., BADÍA, S. & CODINA, R. 2011. "Aproximation of the inductionless MHD problem using a stabilized finite element method". J. Computational Physics, 230 (2011), 1281-1303.

PRAGER, W. 1961. "Introduction to mechanics of continua", Boston, Ginn.

PRANDTL, L. 1920. "Über die härte plastischer Körper. . Göttinger Nachrichten, 74–85.

PRINCIPE, J. 2008. "Subgrid scale stabilizad finite elements for low speed flows". Universitat Politècnica de Catalunya.

PUTZ, A., BURGHELEA, T. & MARTINEZ, D. 2008. "Settling of an insolated sphericalparticule in a yield stress shear thinning fluid". J. Physics of fluids, 20.

REDDY, K. & TANNER, R. 1977. "Finite Element approach to die-swell problem of non.Newtonian fluids". Fluid Mechanics Conference. Australia.

REINER, E. 1958. "Handbuch der phisik", Berlin, Springer-Verlag.

REYNOLDS, O. 1985. "On the dilatancy of media composed of rigid particles in contact". Philos. Mag,.

RITTER, A. (ed.) 1892. "Die Fortpflanzung der Wasserwellen".

ROQUET, N. & SARAMITO, P. 2003. "An adaptive finite element method for Bingham fluid flows around a cylinder". J. Computer Methods in Applied Mechanics and Engineering, 192, 3317-3341.

SANJAY, M. & JAYARAMAN, K. 2002. "Asymmetic flows in planar symmetric channel with large expansion ratio". Int. J. for Numerical Method in Fluids, 38, 945-962.

SAVAGE, S. & HUTTER, K. 1989. "The dynamic of avalanches of granular material down from initiation to runout". J. Fluid Mech., 199, 177-215.

SCOTT, P., MIRZA, F. & VLACHOPOULOS 1988. "Finite-element simulation of laminar viscoplastic flows with regios of recirculations". J. Rheology, 32, 387-400.

SCHLICHTING, H. 1968. "Boundary layer theory", McGraw Hill.

SCHOKLITSCH, A. 1917. "Über dambruchwellen", Vienna.

SHAPIRA, M., DEGANI, D. & WEIHS, D. 1990. "Stability and existence of multiple solutions for viscou flow in suddenly enlarged channel". Computers and Fluids, 18, 239-258.

SIVAKUMAR, P., BHARTI, R. & CHHABRA, R. 2006. "Effect of power-law index on critical parameter for power-law across an unconfined circular cylinder". J. Chemical Engineering Science, 61, 6035-6046.

SIVAKUMAR, P., BHARTI RAM PRAKASH Y CHHABRA R. P. 2006. "Effect of powerlaw index on critical parameter for power-law across an unconfined circular cylinder". Chemical Engineering Science, 61, 6035-6046.

SLIJECPČEVIĆ, S. & D., P. 2004. "Some aspects of computational modelling of non-Newtonian fluids based on stbilised finite elemt method". In: EDS.), W. R. Y. P. L. Q. A. (ed.) Eurpean Congress on Computational Methods in Applied Science and Engineering. Jyvaskyla: P. Neittaaanmaki, T. Rossi, K. Majava, y O. Pironneau (eds.).

SOUZA, M. P. R. & DUTRA, E. S. S. 2004. "Viscosity function for yield-stress liquids". Appl. Rheol., 14, 296-302.

STOKER, J. 1957. "Water wave. The mathematical theory with aplications", New York, USA, Intersciences Publishers.

STOKES, G. 1851 "On the effect of the internal friction of fluids on the motion of pendulums". Trans. Cambridge Philos. Soc. 9, 8. Reprinted in G. Stokes, Larmor y J. Rayleigh, Mathematical and Physical Papers (Cambridge University Press, Cambridge

TABUTEAU, H. & COUSSOT, P. 2007. "Drag force on a sphere in steady motion through a yield-stress fluid". J. Rheology, 5 (1), 125-137.

TAKAHASHI, T. (ed.) 2007. "Debris flow: Mechanics, prediction and countermeasures", London, UK: Taylor & Francis Group.

TANG, G., WANG, S. & TAO, W. 2011. "Bingham fluid simulation with the incompressible lattice Boltzmann model". J. Non-Newtonian Fluid Mech., 166, 145-151.

TANNER, R. (ed.) 1988. "Engineering Rheology": Oxford University Press.

TANNER, R. 1992. "Engineering rhelogy", Oxford, Oxford Science Publications.

TANNER, R. 1993. "Stoke paradox for power-law fluid around cylinder". J. Non-Newtonian Fluid Mechanic, 50, 217-224.

TANNER, R. 2000. "Engineering rheology", Oxford University Press.

TANNER, R. & MILTHORPE 1983. "Numerical simulation of flow fluids with yield stress", Num. meth. lam. turb. flow". In: EDS. C. TAYLOR, J. A. J. A. W. R. S. (ed.) Proc. 3rd Int. Conf., Scattle. Swasea, UK: Pineridge Press.

VALENTIC, L. & EWHITMORE, R. 1965. "The terminal velocity of sphere in Bingham plastics". Brit. J. Applied Physic, 16, 1197-1203.

VAN DYKE, M. (ed.) 1964. "Perturbation methods in fluid mechanics", New York: Academic Press.

VOELLMY, A. 1955. "Über di e Zer störungskraft v on Law inen". Schweizerische Bauzeitung, 73, 212-285.

VOLA, D., BOSCARDIN, L. & LATCHÉ, J. 2003. "Laminar unsteady flows of Bingham fluids:a numerical strategy and some benchmark results". J. Computational Physics, 187, 441-456.

VOLAROVICH, M. & GUTKIN, A. 1953. "Theory of flow in a viscoplastic medium". J. Colloid, 15, 153-159.

WALTERS, K. & TANNER, R. 1992. "The motion of a sphere through an elastic liquid". Transport processes in bubbles, drops and particles. New York: Hemisphere: In R. P. Chhabra, y D. DeKee (Ed.).

WEISSENBERG, K. 1949. Proc. 1st Intern. Congr. Rheology, Amsterdam.

WESTERBERG, L., LUNDSTRÖM, T., HÖGLUND, E. & LUGT, P. M. 2010. "Investigation of grease flow in a rectangular channel including wall slip effects using microparticle image velocimetry". Tribology Transaccions.

YANO, K. & DAIDO, A. 1965. "Fundamental study on mud.flow: Bull". DPRI, 69-83.

YOSHIOKA, N. & ADACHI, K. 1971a. "On variational principles for a non-Newtonian fluid". J. Chemical Engineering Japan, 4, 217-220.

YOSHIOKA, N., ADACHI, K. & ISHIMURA, H. 1971b. "On creeping flow of a viscoplastic fluid past a sphere". Kagaku Kogaku, 10, 1144-1152.

ZIENKIEWICZ, O. & GODBOLE, P. 1975. "Viscous, Incompresible Flow with Special Reference to Non-Newtonian (plastic) Fluids", from Finite Element in fluids.

ZIENKIEWICZ, O., JAIN, P. & OÑATE, E. 1978. "Flow of solids during forming and extrusion: some aspect of numerical solutions". Int. J. Solids Struct., 14, 15-38.

ZISIS, T. & MITSOULIS, E. 2002. "viscoplastic flow around a cylinder kept between parallel plates". J. Non-Newtonian Fluid Mechanics, 105, 1-20.

Back to Top

Document information

Published on 01/11/17
Submitted on 24/10/17

Licence: CC BY-NC-SA license

Document Score

0

Views 29
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?