(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Abstract<!-- Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
==Abstract==
 +
Nowadays the marine renewable energies are getting an important role in the transformation of the energy model. And tools for predicting the performance of these new technologies are essential in their commercial development. An example of these are floating wind turbines (FWT), and this work presents the coupling and verification of a set of tools to carry out fully coupled simulation of FWTs. These tools are built on the seakeeping software SeaFEM and on the aeroelastic simulator code FAST.
  
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
First, the basic features of each tools are explained. Second, a coupling strategy to assess the performance of FWTs is presented. Third, the results obtained coupling SeaFEM-FAST are used for an inter-code comparison against those obtained coupling Hydrodyn-FAST. Forth, an intensive analysis of a FWT based on the NREL 5 MW baseline is carried out taking into account the environmental conditions of the selected location. These coupled computations are carried out following the Design Load Cases proposed by IEC rules to assess the Ultimate Limit State (ULS). Finally, some comparison and conclusions based on the obtained results are drawn.
  
An abstract is required for every document; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. -->==
+
==Presentation==
Nowadays the marine renewable energies are getting an important role in the transformation of the energy model. And tools for predicting the performance of these new technologies are essential in their commercial development. An example of these are floating wind turbines (FWT), and this work presents the coupling and verification of a set of tools to carry out fully coupled simulation of FWTs. These tools are built on the seakeeping software SeaFEM [1, 2, 3, 4, 5] and on the aeroelastic simulator code FAST [6].
+
[[File:Gutierrez_Romero_et_al_2019a_8751_snapshot.jpg]][https://upct-my.sharepoint.com/:p:/g/personal/jose_gutierrez_upct_es/EenzXAmZeZJNu5ARnuw_PyMB1Ug_YJ19RljemovkL4aPKg?e=7NMJpU MARINE PRESENTATION]
  
First, the basic features of each tools are explained. Second, a coupling strategy to assess the performance of FWTs is presented. Third, the results obtained coupling SeaFEM-FAST are used for an inter-code comparison against those obtained coupling Hydrodyn-FAST. Forth, an intensive analysis of a FWT based on the NREL 5 MW baseline is carried out taking into account the environmental conditions of the selected location. These coupled computations are carried out following the Design Load Cases proposed by IEC rules [7] to assess the Ultimate Limit State (ULS). Finally, some comparison and conclusions based on the obtained results are drawn.
+
==References==
  
 +
[1] Serván-Camas B. 2016. A time-domain finite element method for seakeeping and wave resistance problems. School of Naval Architecture and Ocean Engineering. Technical University of Madrid. Doctoral thesis.
  
==Presentation<!-- You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
[2] Serván-Camas, B., and Garcia-Espinosa, J. (2013). Accelerated 3D multi-body seakeeping simulations using unstructured finite elements. Journal of Computational Physics 252, 382–403.
  
Most of the documents in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific publications in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
[3] Gutiérrez-Romero, J. E., García-Espinosa, J., Serván-Camas, B., Zamora-Parra, B. (2016). Non-linear dynamic analysis of the response of moored floating structures. Marine Structures 49, 116-137. Marine Structures 58, 278–300
  
 +
[4] Serván-Camas, B., Cercós-Pita, J. L., Colom-Cobb, J., García-Espinosa, J., SoutoIglesias, A. (2016). Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling. Ocean Engineering 123, 383–396.
  
 +
[5] Serván-Camas, B., Gutiérrez-Romero, J. E., Garcia-Espinosa, J. (2018). A time-domain second-order FEM model for the wave diffraction-radiation problem. Validation with a semisubmersible platform.
  
2.1 Subsections
+
[6] Jonkman, J.M.  Buhl Jr. M.L. FAST user's guide Technical Report NREL/EL-500-38230 National Renewable Energy Laboratory, Colorado, USA (2005). www.nrel.gov
  
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
 
 
 
2.2 General guidelines
 
 
Some general guidelines that should be followed in your manuscripts are:
 
 
*  Avoid hyphenation at the end of a line.
 
 
*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
 
 
*  Use decimal points (not commas); use a space for thousands (10 000 and above).
 
 
*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
 
 
 
2.3 Tables, figures, lists and equations
 
 
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
 
 
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
 
 
Number the figures according to their sequence in the text. Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
 
 
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
 
 
1. The first entry in this list
 
 
2. The second entry
 
 
2.1. A subentry
 
 
3. The last entry
 
 
* A bulleted list item
 
 
* Another one
 
 
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. (1].
 
 
 
2.4 Supplementary material
 
 
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file. -->==
 
[https://upct-my.sharepoint.com/:p:/g/personal/jose_gutierrez_upct_es/EenzXAmZeZJNu5ARnuw_PyMB1Ug_YJ19RljemovkL4aPKg?e=jBcTaT MARINE PRESENTATION]
 
 
==4 Acknowledgments<!-- Acknowledgments should be inserted at the end of the document, before the references section. -->==
 
 
 
 
 
==5 References<!--[1] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Article code. Available: http://www.scipedia.com/ucode.
 
 
[2] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Volume number, first page-last page.
 
 
[3] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
 
 
[4] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
 
 
[5] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
 
 
[6] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: http://www.scipedia.com/document.pdf.
 
-->==
 
 
[1] Serván-Camas B. 2016. A time-domain finite element method for seakeeping and wave resistance problems. School of Naval Architecture and Ocean Engineering. Technical University of Madrid. Doctoral thesis.
 
[2] Serván-Camas, B., and Garcia-Espinosa, J. (2013). Accelerated 3D multi-body seakeeping simulations using unstructured finite elements. Journal of Computational Physics 252, 382–403.
 
[3] Gutiérrez-Romero, J. E., García-Espinosa, J., Serván-Camas, B., Zamora-Parra, B. (2016). Non-linear dynamic analysis of the response of moored floating structures. Marine Structures 49, 116-137. Marine Structures 58, 278–300
 
[4] Serván-Camas, B., Cercós-Pita, J. L., Colom-Cobb, J., García-Espinosa, J., SoutoIglesias, A. (2016). Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling. Ocean Engineering 123, 383–396.
 
[5] Serván-Camas, B., Gutiérrez-Romero, J. E., Garcia-Espinosa, J. (2018). A time-domain second-order FEM model for the wave diffraction-radiation problem. Validation with a semisubmersible platform.
 
[6] Jonkman, J.M.  Buhl Jr. M.L. FAST user's guide Technical Report NREL/EL-500-38230 National Renewable Energy Laboratory, Colorado, USA (2005). www.nrel.gov
 
 
[7] IEC 61400-3:2009 Design requirements for offshore wind turbines. www.iec.ch
 
[7] IEC 61400-3:2009 Design requirements for offshore wind turbines. www.iec.ch

Latest revision as of 08:23, 17 May 2019

Abstract

Nowadays the marine renewable energies are getting an important role in the transformation of the energy model. And tools for predicting the performance of these new technologies are essential in their commercial development. An example of these are floating wind turbines (FWT), and this work presents the coupling and verification of a set of tools to carry out fully coupled simulation of FWTs. These tools are built on the seakeeping software SeaFEM and on the aeroelastic simulator code FAST.

First, the basic features of each tools are explained. Second, a coupling strategy to assess the performance of FWTs is presented. Third, the results obtained coupling SeaFEM-FAST are used for an inter-code comparison against those obtained coupling Hydrodyn-FAST. Forth, an intensive analysis of a FWT based on the NREL 5 MW baseline is carried out taking into account the environmental conditions of the selected location. These coupled computations are carried out following the Design Load Cases proposed by IEC rules to assess the Ultimate Limit State (ULS). Finally, some comparison and conclusions based on the obtained results are drawn.

Presentation

Gutierrez Romero et al 2019a 8751 snapshot.jpgMARINE PRESENTATION

References

[1] Serván-Camas B. 2016. A time-domain finite element method for seakeeping and wave resistance problems. School of Naval Architecture and Ocean Engineering. Technical University of Madrid. Doctoral thesis.

[2] Serván-Camas, B., and Garcia-Espinosa, J. (2013). Accelerated 3D multi-body seakeeping simulations using unstructured finite elements. Journal of Computational Physics 252, 382–403.

[3] Gutiérrez-Romero, J. E., García-Espinosa, J., Serván-Camas, B., Zamora-Parra, B. (2016). Non-linear dynamic analysis of the response of moored floating structures. Marine Structures 49, 116-137. Marine Structures 58, 278–300

[4] Serván-Camas, B., Cercós-Pita, J. L., Colom-Cobb, J., García-Espinosa, J., SoutoIglesias, A. (2016). Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling. Ocean Engineering 123, 383–396.

[5] Serván-Camas, B., Gutiérrez-Romero, J. E., Garcia-Espinosa, J. (2018). A time-domain second-order FEM model for the wave diffraction-radiation problem. Validation with a semisubmersible platform.

[6] Jonkman, J.M. Buhl Jr. M.L. FAST user's guide Technical Report NREL/EL-500-38230 National Renewable Energy Laboratory, Colorado, USA (2005). www.nrel.gov

[7] IEC 61400-3:2009 Design requirements for offshore wind turbines. www.iec.ch

Back to Top

Document information

Published on 15/05/19
Submitted on 15/05/19

Licence: CC BY-NC-SA license

Document Score

0

Views 32
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?