m (Cinmemj moved page Draft Samper 906462519 to Salsi et al 2018a)
 
(No difference)

Latest revision as of 11:56, 26 April 2019

Published in Metals Vol. 8 (8), pp. 633-657, 2018
DOI: 10.3390/met8080633

Abstract

AM processes are characterized by complex thermal cycles that have a deep influence on the microstructural transformations of the deposited alloy. In this work, a general model for the prediction of microstructure evolution during solid state transformations of Ti6Al4V is presented. Several formulations have been developed and employed for modeling phase transformations in other manufacturing processes and, particularly, in casting. The proposed model is mainly based on the combination and modification of some of these existing formulations, leading to a new overall model specifically dedicated to AM. The accuracy and suitability of the integrated model is enhanced, introducing new dedicated features. In fact the model is designed to deal with fast cooling and re-heating cycles typical of AM processes because: (a) it is able to consider incomplete transformations and varying initial content of phases and (b) it can take into account simultaneous transformations.The model is implemented in COMET, an in-house Finite Element (FE)-based framework for the solution of thermo-mechanical engineering problems. The validation of the microstructural model is performed by comparing the simulation results with the data available in the literature. The sensitivity of the model to the variation of material parameters is also discussed.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2018

DOI: 10.3390/met8080633
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 10
Views 13
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?