(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
An important concern in sheet stamping is the risk of obtaining brittle final products that can be affected by fracture. Monte Carlo simulations presented herein show that this is governed by two main factors, namely static and dynamic friction coefficients. Whereas the latter correlates in a non-linear manner with minimum and maximum end thickness, the relationship of these design parameters to the former exhibits a bifurcation that is typical of highly non-linear phenomena, in which there is a sensitivity to small perturbations of the input values (chaos). In order to estimate the reliability of the process (i.e., the probability of obtaining brittle products due to low minimum and maximum thicknesses) with a reduced number of Monte Carlo runs, it is proposed to assimilate the problem to a pattern recognition task, due to the existence of two classes, namely robust and brittle. Among many pattern recognition algorithms that are useful to this end, use is made of support vector machines, as this incorporates the powerful tool of class margins that allow a drastic reduction of the number of simulations.
 
An important concern in sheet stamping is the risk of obtaining brittle final products that can be affected by fracture. Monte Carlo simulations presented herein show that this is governed by two main factors, namely static and dynamic friction coefficients. Whereas the latter correlates in a non-linear manner with minimum and maximum end thickness, the relationship of these design parameters to the former exhibits a bifurcation that is typical of highly non-linear phenomena, in which there is a sensitivity to small perturbations of the input values (chaos). In order to estimate the reliability of the process (i.e., the probability of obtaining brittle products due to low minimum and maximum thicknesses) with a reduced number of Monte Carlo runs, it is proposed to assimilate the problem to a pattern recognition task, due to the existence of two classes, namely robust and brittle. Among many pattern recognition algorithms that are useful to this end, use is made of support vector machines, as this incorporates the powerful tool of class margins that allow a drastic reduction of the number of simulations.
 +
 +
<pdf>Media:Hurtado_et_al_2005a_6755_HurZaOn2005.pdf</pdf>

Latest revision as of 09:36, 24 April 2019

Published in International Journal of Vehicle Design Vol. 39 (1-2), pp. 110–124, 2005
doi: 10.1504/IJVD.2005.007223

Abstract

An important concern in sheet stamping is the risk of obtaining brittle final products that can be affected by fracture. Monte Carlo simulations presented herein show that this is governed by two main factors, namely static and dynamic friction coefficients. Whereas the latter correlates in a non-linear manner with minimum and maximum end thickness, the relationship of these design parameters to the former exhibits a bifurcation that is typical of highly non-linear phenomena, in which there is a sensitivity to small perturbations of the input values (chaos). In order to estimate the reliability of the process (i.e., the probability of obtaining brittle products due to low minimum and maximum thicknesses) with a reduced number of Monte Carlo runs, it is proposed to assimilate the problem to a pattern recognition task, due to the existence of two classes, namely robust and brittle. Among many pattern recognition algorithms that are useful to this end, use is made of support vector machines, as this incorporates the powerful tool of class margins that allow a drastic reduction of the number of simulations.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2005

DOI: 10.1504/IJVD.2005.007223
Licence: CC BY-NC-SA license

Document Score

0

Views 15
Recommendations 0

Share this document