(One intermediate revision by one other user not shown) | |||
Line 4: | Line 4: | ||
Addresses two difficulties which arise when using a compressible code with equal order interpolation (non‐staggered grids in the finite‐difference nomenclature) to capture a steady‐state solution in the incompressible limit, i.e. at low Mach numbers. Explains that, first, numerical instabilities in the form of spurious oscillations in pressure pollute the solution and, second, the convergence to the steady state becomes extremely slow owing to bad conditioning of the different speeds of propagation. By using a stabilized method, allows the use of equal‐order interpolations in a consistent (weighted‐residual) formulation which stabilizes both the convection and the continuity terms at the same time. On the other hand, by using specially devised preconditioning, assures a rate of convergence independent of Mach number. | Addresses two difficulties which arise when using a compressible code with equal order interpolation (non‐staggered grids in the finite‐difference nomenclature) to capture a steady‐state solution in the incompressible limit, i.e. at low Mach numbers. Explains that, first, numerical instabilities in the form of spurious oscillations in pressure pollute the solution and, second, the convergence to the steady state becomes extremely slow owing to bad conditioning of the different speeds of propagation. By using a stabilized method, allows the use of equal‐order interpolations in a consistent (weighted‐residual) formulation which stabilizes both the convection and the continuity terms at the same time. On the other hand, by using specially devised preconditioning, assures a rate of convergence independent of Mach number. | ||
+ | |||
+ | <pdf>Media:Nigro_et_al_2019a_8229_A general algorithm for compressible and incompressible flow. Stability analysis and explicit time integration.pdf</pdf> |
Published in Int. J. of Num. Meths. for Heat and Fluid Flow Vol. 7 (2/3), pp. 141-168, 1997
doi:10.1108/09615539710163239
Addresses two difficulties which arise when using a compressible code with equal order interpolation (non‐staggered grids in the finite‐difference nomenclature) to capture a steady‐state solution in the incompressible limit, i.e. at low Mach numbers. Explains that, first, numerical instabilities in the form of spurious oscillations in pressure pollute the solution and, second, the convergence to the steady state becomes extremely slow owing to bad conditioning of the different speeds of propagation. By using a stabilized method, allows the use of equal‐order interpolations in a consistent (weighted‐residual) formulation which stabilizes both the convection and the continuity terms at the same time. On the other hand, by using specially devised preconditioning, assures a rate of convergence independent of Mach number.
Published on 01/01/1997
DOI: 10.1108/09615539710163239
Licence: CC BY-NC-SA license
Are you one of the authors of this document?