(No difference)

Latest revision as of 11:12, 4 April 2019

Published in Computer Methods in Material Science Vol.6 (1-2), pp. 15-25, 2006

Abstract

In this paper, current developments on the coupled thermomechanical computational simulation of metal casting processes are presented A thermodynamically consistent constitutive material model is derived from a thermoviscoplastic free energy function. A continuous transition between the initial fluid-like and the final solid-like is modeled by considering a J2 thermoviscoplastic model. Thus, an thermoelastoviscoplastic model, suitable for the solid-like phase, degenerates into a pure thermoviscous model, suitable for the liquid-like phase, according to the evolution of the solid fraction function. A thermomechanical contact model, taking into account the insulated effects of the air-gap due to thermal shrinkage of the part during solidification and cooling, is introduced. A fractional step method, arising from an operator split of the governing differential equations, is considered to solve the coupled problem using a staggered scheme. Within a finite element setting, using low-order interpolation elements, a multiscale stabilization technique is introduced as a convenient framework to overcome the Babuska-Brezzi condition and avoid volumetric locking and pressure instabilities arising in incompressible or quasi-incompressible problems. Computational simulation of industrial castings show the good performance of the model.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2006

Licence: CC BY-NC-SA license

Document Score

0

Views 6
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?