m (Move page script moved page Samper et al 2018ak to Idelsohn et al 2004a) |
|
(One intermediate revision by one other user not shown) | |
(No difference)
|
Published in Int. Journal for Numerical Methods in Engineering Vol. 61 (7), pp. 964-989, 2004
doi: 10.1002/nme.1096
Particle Methods are those in which the problem is represented by a discrete number of particles. Each particle moves accordingly with its own mass and the external/internal forces applied to it. Particle Methods may be used for both, discrete and continuous problems. In this paper, a Particle Method is used to solve the continuous fluid mechanics equations. To evaluate the external applied forces on each particle, the incompressible Navier–Stokes equations using a Lagrangian formulation are solved at each time step. The interpolation functions are those used in the Meshless Finite Element Method and the time integration is introduced by an implicit fractional‐step method. In this manner classical stabilization terms used in the momentum equations are unnecessary due to lack of convective terms in the Lagrangian formulation. Once the forces are evaluated, the particles move independently of the mesh. All the information is transmitted by the particles. Fluid–structure interaction problems including free‐fluid‐surfaces, breaking waves and fluid particle separation may be easily solved with this methodology.
Published on 01/01/2004
DOI: 10.1002/nme.1096
Licence: CC BY-NC-SA license
Web of Science Core Collection® Times cited: 242
Crossref Cited-by Times cited: 236
OpenCitations.net Times cited: 147