m (Cinmemj moved page Draft Samper 952743908 to Rojek et al 2001a)
 
(No difference)

Latest revision as of 12:22, 18 January 2019

Published in Journal of Materials Processing Technology Vol. 119, pp. 41-47, 2001
doi: 10.1016/S0924-0136(01)00894-9

Abstract

This paper presents some advances of finite element explicit formulation for simulation of metal forming processes. Because of their computational efficiency, finite element programs based on the explicit dynamic formulation proved to be a very attractive tool for the simulation of metal forming processes. The use of explicit programs in the sheet forming simulation is quite common, the possibilities of these codes in bulk forming simulation in our opinion are still not exploited sufficiently. In our paper, we will consider aspects of bulk forming simulation.

We will present new formulations and algorithms developed for bulk metal forming within the explicit formulation. An extension of a finite element code for the thermomechanical coupled analysis is discussed. A new thermomechanical constitutive model developed by the authors and implemented in the program is presented.

A new formulation based on the so-called split algorithm allows us to use linear triangular and tetrahedral elements in the analysis of large plastic deformations characteristic to forming processes. Linear triangles and tetrahedra have many advantages over quadrilateral and hexahedral elements. Linear triangles and tetrahedra based on the standard formulations exhibit volumetric locking and are not suitable for large plastic strain simulation. The new formulation allows to overcome this difficulty.

New formulations and algorithms have been implemented in the finite element code Stampack developed at the International Centre for Numerical Methods in Engineering in Barcelona. Numerical examples illustrate some of the possibilities of the finite element code developed and validate new algorithms.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2001

DOI: 10.1016/S0924-0136(01)00894-9
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 19
Views 18
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?