Diff selection: Mark the radio boxes of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
I. de-Pouplana, E. Oñate. A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech. 41(1) (2016) DOI 10.1002/nag.2550
G. Della Vecchia, M. Cremonesi, F. Pisanò. On the rheological characterisation of liquefied sands through the dam‐breaking test. Int J Numer Anal Methods Geomech 43(7) (2019) DOI 10.1002/nag.2905
A. Franci, E. Oñate, J. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int. J. Numer. Meth. Engng 102(3-4) (2014) DOI 10.1002/nme.4839
A. Franci, E. Oñate, J. Carbonell. Velocity-based formulations for standard and quasi-incompressible hypoelastic-plastic solids. Int. J. Numer. Meth. Engng 107(11) (2016) DOI 10.1002/nme.5205
M. Zhu, M. Scott. Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int. J. Numer. Meth. Engng 109(9) (2016) DOI 10.1002/nme.5321
S. Meduri, M. Cremonesi, U. Perego. An efficient runtime mesh smoothing technique for 3D explicit Lagrangian free-surface fluid flow simulations. Int J Numer Methods Eng 117(4) (2018) DOI 10.1002/nme.5962
E. Oñate, J. García-Espinosa, S. Idelsohn, B. Serván-Camas. Ship Hydrodynamics. (2017) DOI 10.1002/9781119176817.ecm2070
I. Iaconeta, A. Larese, R. Rossi, Z. Guo. Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials. Materials 10(10) (2017) DOI 10.3390/ma10101150
A. Franci. Unified Stabilized Formulation for Quasi-incompressible Materials. (2016) DOI 10.1007/978-3-319-45662-1_3
E. Oñate, M. Celigueta, S. Latorre, G. Casas, R. Rossi, J. Rojek. Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comp. Part. Mech. 1(1) (2014) DOI 10.1007/s40571-014-0012-9
M. Celigueta, K. Deshpande, S. Latorre, E. Oñate. A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores. Comp. Part. Mech. 3(2) (2015) DOI 10.1007/s40571-015-0090-3
F. Salazar, J. San-Mauro, M. Celigueta, E. Oñate. Air demand estimation in bottom outlets with the particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0117-4
M. Cremonesi, S. Meduri, U. Perego, A. Frangi. An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0122-7
M. Zhu, M. Scott. Direct differentiation of the quasi-incompressible fluid formulation of fluid–structure interaction using the PFEM. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0123-6
A. Franci, M. Cremonesi. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0124-5
A. Franci, I. de-Pouplana, G. Casas, M. Celigueta, J. González-Usúa, E. Oñate. PFEM–DEM for particle-laden flows with free surface. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00244-1
F. Salazar, J. San-Mauro, M. Celigueta, E. Oñate. Shockwaves in spillways with the particle finite element method. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00252-1
A. Bal, T. Dang, G. Meschke. A 3D particle finite element model for the simulation of soft soil excavation using hypoplasticity. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00271-y
H. Kohno. Convergence improvement of the simultaneous relaxation method used in the finite element analysis of incompressible fluid flows. EC 37(2) DOI 10.1108/ec-02-2019-0069
E. Oñate, A. Franci, J. Carbonell. A Particle Finite Element Method (PFEM) for Coupled Thermal Analysis of Quasi and Fully Incompressible Flows and Fluid-Structure Interaction Problems. (2014) DOI 10.1007/978-3-319-06136-8_6
O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9
C. Felippa, E. Oñate, S. Idelsohn. Variational Framework for FIC Formulations in Continuum Mechanics: High Order Tensor-Derivative Transformations and Invariants. Arch Computat Methods Eng 25(4) (2017) DOI 10.1007/s11831-017-9245-0
E. Oñate, A. Franci, J. Carbonell. A particle finite element method for analysis of industrial forming processes. Comput Mech 54(1) (2014) DOI 10.1007/s00466-014-1016-2
E. Oñate, J. Carbonell. Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids. Comput Mech 54(6) (2014) DOI 10.1007/s00466-014-1078-1
P. Becker, S. Idelsohn, E. Oñate. A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Comput Mech 55(6) (2014) DOI 10.1007/s00466-014-1107-0