You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
A computational study has been performed to make a computational analysis of natural convection and entropy generation in a sharp edged finned cavity. Three dimensional analysis has been done by solving governing equations with a written computational code in Fortran. The study is performed for fin inclination angles from −60° to 60°, Ra = 10<sup>5</sup>, Pr = 0.7, ''R<sub>c</sub>  '' (conductivities ratio) changes from 0.01 to 100 and irreversibility coefficient is taken as <math display="inline">\varphi ={10}^{-5}</math>. It is observed that higher values of thermal conductivity ratio (Rc ⩾ 1) do not affect entropy generation due to heat transfer and Bejan number.
4
5
==Keywords==
6
7
Entropy generation; Inclined fin; Natural convection; Three dimensional
8
9
==Nomenclature==
10
11
Be- Bejan number
12
13
Cp- specific heat at constant pressure (J/kg K)
14
15
''g''- gravitational acceleration (m/s<sup>2</sup>)
16
17
''k''- thermal conductivity (W/m K)
18
19
''l''- cavity width
20
21
''n''- unit vector normal to the wall
22
23
''N<sub>s</sub>''- dimensionless local generated entropy
24
25
Nu- local Nusselt number
26
27
Pr- Prandtl number
28
29
Ra- Rayleigh number
30
31
Rc- thermal conductivity ratio
32
33
<math display="inline">S_{gen}^{{'}}</math>- generated entropy (kJ/kg K)
34
35
''t''- dimensionless time <math display="inline">\left(t^{{'}}\cdot \alpha /l^2\right)</math>
36
37
''T''- dimensionless temperature <math display="inline">\left[(T^{{'}}-T_c^{{'}})/(T_h^{{'}}-T_c^{{'}})\right]</math>
38
39
<math display="inline">T_c^{{'}}</math>- cold temperature (K)
40
41
<math display="inline">T_h^{{'}}</math>- hot temperature (K)
42
43
''T<sub>o</sub>''- bulk temperature <math display="inline">\left[T_o=(T_c^{{'}}+T_h^{{'}})/2\right]</math> (K)
44
45
<math display="inline">\overset{\rightarrow}{V}</math>- dimensionless velocity vector <math display="inline">\left({\overset{\rightarrow}{V}}^{{'}}\cdot l/\alpha \right)</math>
46
47
''x'', ''y'', ''z''- dimensionless Cartesian coordinates <math display="inline">\left(x^{{'}}/l\mbox{,}y^{{'}}/l\mbox{,}z^{{'}}/l\right)</math>
48
49
===Greek symbols===
50
51
<math display="inline">\alpha </math>- thermal diffusivity (m<sup>2</sup>/s)
52
53
<math display="inline">\beta </math>- thermal expansion coefficient (1/K)
54
55
<math display="inline">\varphi </math>- irreversibility coefficient
56
57
<math display="inline">\theta </math>- fin inclination
58
59
<math display="inline">\rho </math>- density (kg/m<sup>3</sup>)
60
61
<math display="inline">\mu </math>- dynamic viscosity (kg/m s)
62
63
<math display="inline">\nu </math>- kinematic viscosity (m<sup>2</sup>/s)
64
65
<math display="inline">\overset{\rightarrow}{\psi }</math>- dimensionless vector potential (<math display="inline">{\overset{\rightarrow}{\psi }}^{{'}}/\alpha </math>)
66
67
<math display="inline">\overset{\rightarrow}{\omega }</math>- dimensionless vorticity <math display="inline">\left({\overset{\rightarrow}{\omega }}^{{'}}\cdot \alpha /l^2\right)</math>
68
69
<math display="inline">\Delta T</math>- dimensionless temperature difference
70
71
===Subscripts===
72
73
av- average
74
75
''x'', ''y'', ''z''- Cartesian coordinates
76
77
fr- friction
78
79
f- fluid
80
81
av- average
82
83
nf- nanofluid
84
85
s- solid
86
87
th- thermal
88
89
tot- total
90
91
===Superscript===
92
93
′- dimensional variable
94
95
==1. Introduction==
96
97
Natural convection heat transfer occurs in many field of engineering such as cooling of electronic equipment, solar collectors, heating of buildings, heat exchangers and many other applications. Control of energy is extremely important to save energy consumption. Thus, entropy generation analysis is highly important to answer the question of why or where energy is consumed in the system?
98
99
Using of passive systems such as baffle, fin or obstacle is a simple way to control heat and fluid flow due to natural convection in cavities. Varol et al. [[#b0005|[1]]] studied the laminar natural convection heat transfer in an inclined fin located cavity by solving two dimensional governing equations. Also, they performed an experiment to compare their results and found the inclination angle of the fin is the important parameter to control heat and fluid flow. As a similar work, Ozgen et al. [[#b0010|[2]]] tested the effects of Prandtl number and baffle location on natural convection. Li and Byon [[#b0015|[3]]] studied the orientation effect on the thermal performance of radial heat sinks with a circular base, concentric ring, and rectangular fins both experimentally and numerically. They observed that the radial heat sink in orientation 0 is found to have slightly better thermal performance than that of 180. Saravanan and Sivaraj [[#b0020|[4]]] performed a numerical work on combined natural convection and thermal radiation in a square cavity with a non-uniformly heated plate. Effects of heat generating baffles on natural convection in a square cavity were studied by Saravanan and Vidhya Kumar [[#b0025|[5]]]. In their study, the baffles were kept centrally separated by a distance d in the cavity and assumed to generate heat uniformly. They observed that flow inhibition mechanism was dominating only when the baffles are away from the cavity walls. Other related works on two-dimensional analysis of natural convection in inclined fin attached cavities are studied in Refs. [[#b0030|[6]]], [[#b0035|[7]]], [[#b0040|[8]]] and [[#b0005|[1]]].
100
101
Importance of analyses of entropy generation from the energy efficiency point of view is presented in reviewable work of Öztop and Al-Salem [[#b0045|[9]]] and Sciacovelli et al. [[#b0050|[10]]]. They mainly focused on entropy generation in natural and mixed convection heat transfer. Shuja et al. [[#b0055|[11]]] solved a problem on natural convection in a square cavity with a heat generating body by considering entropy generation. Khorasanizadeh et al. [[#b0060|[12]]] performed a numerical study of natural convection and entropy generation of Cu-water nanofluid within an enclosure with a conductive baffle embedded on bottom hot wall. They solved the governing equations numerically with Finite Volume Method by using the SIMPLER algorithm. They showed that assuming a constant irreversibility factor, ''χ'', with change of Ra and ''ϕ'' is not correct.
102
103
Entropy generation due to natural convection in an enclosure heated locally from below with two isoflux sources was investigated by Mukhopadhyay [[#b0065|[13]]]. They studied unequal heater length and heater strength, the effects of heater length and strength ratios. It is found that minimum entropy generation rate was achieved for the same condition at which the minimum peak heater temperature was obtained. Famouri and Hooman [[#b0070|[14]]] studied the entropy generation in two-dimensional domain to investigate the entropy generation for natural convection by heated partitions in a cavity.
104
105
Dalir [[#b0120|[24]]] studied numerically the entropy generated by laminar forced convection flow and heat transfer of an incompressible Jeffrey non-Newtonian fluid over a linearly stretching, impermeable and isothermal sheet. Results indicate that the generated entropy increases with the increase in Deborah number and decreases by the increase in ratio of relaxation to retardation times. Das et al. [[#b0125|[25]]] investigated the entropy generation in a MHD pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles were considered and several parameters were varied to find the minimum of entropy generation.
106
107
Studies on three dimensional domain of natural convection are very limited. In this context, Wakashima and Saitoh [[#b0075|[15]]] and Fusegi et al. [[#b0080|[16]]] made studies to analyze the natural convection in three dimensional domains.
108
109
The main aim of this work was to study the effects of presence of inclined fin on natural convection heat transfer fluid flow and heat transfer in a three dimensional domain of cavity. Entropy generation is calculated by using obtained data of velocity and temperature. Entropy generation due to heat transfer, fluid flow and total entropy generation are presented via contours and variation according to thermal conductivity ratio.
110
111
==2. Physical model==
112
113
The considered physical model is presented in [[#f0005|Fig. 1]](a) (on the left) and [[#f0005|Fig. 1]](b) (on the right). As seen from the figure, the cavity is heated from the bottom wall and cooled from the top while vertical walls are adiabatic. A sharp edged fin is located to left vertical wall to control heat and fluid flow. This fin is conductive and its conductivity changed from ''R<sub>c</sub>'' = 0.01 to 100. Inclination angle of the fin changes from −60° to 60° and thickness and length of the fin are taken as constant.
114
115
<span id='f0005'></span>
116
117
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
118
|-
119
|
120
121
122
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr1.jpg|center|485px|(a) Three dimensional physical model, and (b) two-dimensional view.]]
123
124
125
|-
126
| <span style="text-align: center; font-size: 75%;">
127
128
Figure 1.
129
130
(a) Three dimensional physical model, and (b) two-dimensional view.
131
132
</span>
133
|}
134
135
==3. Computational study==
136
137
===3.1. Governing equations===
138
139
The 3D vorticity-vector potential formalism <math display="inline">\left(\overset{\rightarrow}{\psi }-\overset{\rightarrow}{\omega }\right)</math> is used as numerical method, in order to eliminate the pressure term, which is delicate to treat. <math display="inline">\left(\overset{\rightarrow}{\psi }\right)</math> and <math display="inline">\left(\overset{\rightarrow}{\omega }\right)</math> are respectively defined by the two following relations:
140
141
<span id='e0005'></span>
142
{| class="formulaSCP" style="width: 100%; text-align: center;" 
143
|-
144
| 
145
{| style="text-align: center; margin:auto;" 
146
|-
147
| <math>{\overset{\rightarrow}{\omega }}^{{'}}=\overset{\rightarrow}{\nabla }\times \overset{\rightarrow}{u^{{'}}}\quad \mbox{and}\quad \overset{\rightarrow}{u^{{'}}}=</math><math>\overset{\rightarrow}{\nabla }\times {\overset{\rightarrow}{\psi }}^{{'}}</math>
148
|}
149
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
150
|}
151
152
After non-dimensionalization the system of equations controlling the phenomenon is as follows:
153
154
<span id='e0010'></span>
155
{| class="formulaSCP" style="width: 100%; text-align: center;" 
156
|-
157
| 
158
{| style="text-align: center; margin:auto;" 
159
|-
160
| <math>-\overset{\rightarrow}{\omega }={\nabla }^2\overset{\rightarrow}{\psi }</math>
161
|}
162
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
163
|}
164
165
<span id='e0015'></span>
166
{| class="formulaSCP" style="width: 100%; text-align: center;" 
167
|-
168
| 
169
{| style="text-align: center; margin:auto;" 
170
|-
171
| <math>\frac{\partial \overset{\rightarrow}{\omega }}{\partial t}+</math><math>(\overset{\rightarrow}{u}\cdot \nabla )\overset{\rightarrow}{\omega }-</math><math>(\overset{\rightarrow}{\omega }\cdot \nabla )\overset{\rightarrow}{u}\cdot =</math><math>\Delta \overset{\rightarrow}{\omega }+\mbox{Ra}\cdot Pr\cdot \left[\frac{\partial T}{\partial z}\mbox{,}-\right. </math><math>\left. \frac{\partial T}{\partial x}\mbox{,}0\right]</math>
172
|}
173
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
174
|}
175
176
<span id='e0020'></span>
177
{| class="formulaSCP" style="width: 100%; text-align: center;" 
178
|-
179
| 
180
{| style="text-align: center; margin:auto;" 
181
|-
182
| <math>\begin{array}{l}
183
\frac{\partial T}{\partial t}+\overset{\rightarrow}{u}\cdot \nabla T={\nabla }^2T\quad \mbox{in fluid}\\
184
\frac{\partial T}{\partial t}=\frac{{\alpha }_s}{{\alpha }_f}{\nabla }^2T\quad \mbox{in solid}
185
\end{array}</math>
186
|}
187
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
188
|}
189
190
{| class="formulaSCP" style="width: 100%; text-align: center;" 
191
|-
192
| 
193
{| style="text-align: center; margin:auto;" 
194
|-
195
| <math>\mbox{with}:\quad Pr=\frac{\nu }{{\alpha }_f}\mbox{,}\quad \mbox{Ra}=</math><math>\frac{g{\beta }_T(T_h-T_c)l^3}{\nu \cdot {\alpha }_f}</math>
196
|}
197
| style="width: 5px;text-align: right;white-space: nowrap;" | 
198
|}
199
200
The energy equation (conduction) needs to be solved in the solid portion of the domain, and the fin conductivity '''k<sub>s</sub>''' is assumed constant. At the solid–fluid interface the temperature and heat flux must be continuous. The latter requirement is mathematically expressed as
201
202
{| class="formulaSCP" style="width: 100%; text-align: center;" 
203
|-
204
| 
205
{| style="text-align: center; margin:auto;" 
206
|-
207
| <math>{\left(\frac{\partial T}{\partial n}\right)}_f=R_c{\left(\frac{\partial T}{\partial n}\right)}_s</math>
208
|}
209
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
210
|}
211
212
where <math display="inline">R_c=k_s/k_f</math> is the thermal conductivity ratio between the material of the fin and the medium that fills the cavity. There is no flow in the fraction of the volume occupied by the blinds (solid). The control volume finite difference method is used to discretize Eqs. [[#e0005|(1)]], [[#e0010|(2)]], [[#e0015|(3)]] and [[#e0020|(4)]]. The central-difference scheme for treating convective terms and the fully implicit procedure to discretize the temporal derivatives are retained. The grid is uniform in all directions with additional nodes on boundaries. The successive relaxation iterating scheme is used to solve the resulting nonlinear algebraic equations. The time step 10<sup>−4</sup> and spatial mesh 81 × 81 × 81 are retained to carry out all numerical tests. The solution is considered acceptable when the following convergence criterion is satisfied for each step of time as
213
214
{| class="formulaSCP" style="width: 100%; text-align: center;" 
215
|-
216
| 
217
{| style="text-align: center; margin:auto;" 
218
|-
219
| <math>\sum_i^{1\mbox{,}2\mbox{,}3}\frac{max\vert {\psi }_i^n-{\psi }_i^{n-1}\vert }{max\vert {\psi }_i^n\vert }+</math><math>max\vert T_i^n-T_i^{n-1}\vert \leqslant {10}^{-5}</math>
220
|}
221
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
222
|}
223
224
Boundary conditions for considered model are given as follows:
225
226
Temperature boundary conditions
227
228
{| class="formulaSCP" style="width: 100%; text-align: center;" 
229
|-
230
| 
231
{| style="text-align: center; margin:auto;" 
232
|-
233
| <math>T=0\quad \mbox{for}\quad \quad y=1\quad \mbox{and}\quad T=</math><math>1\quad \mbox{for}\quad y=0\mbox{,}</math>
234
|}
235
| style="width: 5px;text-align: right;white-space: nowrap;" | 
236
|}
237
238
<math display="inline">\frac{\partial T}{\partial n}=0</math> on all other walls (adiabatic).
239
240
Vorticity
241
242
{| class="formulaSCP" style="width: 100%; text-align: center;" 
243
|-
244
| 
245
{| style="text-align: center; margin:auto;" 
246
|-
247
| <math>\begin{array}{rl}
248
 & {\omega }_x=0\mbox{,}{\omega }_y=-\frac{\partial u_z}{\partial x}\mbox{,}{\omega }_z=\frac{\partial u_y}{\partial x}\quad \mbox{at}\quad x=0\quad \mbox{and}\quad \quad 1\\
249
 & {\omega }_x=\frac{\partial u_z}{\partial y}\mbox{,}{\omega }_y=0\mbox{,}{\omega }_z=-\frac{\partial u_x}{\partial y}\quad \mbox{at}\quad y=0\quad \mbox{and}\quad 1\\
250
 & {\omega }_x=-\frac{\partial u_y}{\partial z}\mbox{,}{\omega }_y=\frac{\partial u_x}{\partial z}\mbox{,}{\omega }_z=0\quad \mbox{at}\quad z=0\quad \mbox{and}\quad 1
251
\end{array}</math>
252
|}
253
| style="width: 5px;text-align: right;white-space: nowrap;" | 
254
|}
255
256
Vector potential
257
258
{| class="formulaSCP" style="width: 100%; text-align: center;" 
259
|-
260
| 
261
{| style="text-align: center; margin:auto;" 
262
|-
263
| <math>\begin{array}{rl}
264
 & \frac{\partial {\Psi }_x}{\partial x}={\Psi }_y={\Psi }_z=0\quad \mbox{at}\quad x=0\quad \mbox{and}\quad 1\\
265
 & {\Psi }_x=\frac{\partial {\Psi }_y}{\partial y}={\Psi }_z=0\quad \mbox{at}\quad y=0\quad \mbox{and}\quad 1\\
266
 & {\Psi }_x={\Psi }_y=\frac{\partial {\Psi }_z}{\partial z}=0\quad \mbox{at}\quad z=0\quad \mbox{and}\quad 1
267
\end{array}</math>
268
|}
269
| style="width: 5px;text-align: right;white-space: nowrap;" | 
270
|}
271
272
Velocity
273
274
{| class="formulaSCP" style="width: 100%; text-align: center;" 
275
|-
276
| 
277
{| style="text-align: center; margin:auto;" 
278
|-
279
| <math>V_x=V_y=V_z=0\quad \mbox{on all walls}</math>
280
|}
281
| style="width: 5px;text-align: right;white-space: nowrap;" | 
282
|}
283
284
===3.2. Entropy generation===
285
286
Theory on entropy generation is given in the literature [[#b0085|[17]]], [[#b0090|[18]]], [[#b0095|[19]]], [[#b0100|[20]]], [[#b0105|[21]]], [[#b0110|[22]]] and [[#b0115|[23]]]. The generated entropy is written in the following form:
287
288
{| class="formulaSCP" style="width: 100%; text-align: center;" 
289
|-
290
| 
291
{| style="text-align: center; margin:auto;" 
292
|-
293
| <math>S_{gen}^{{'}}=-\frac{1}{T^{{'}2}}\cdot \overset{\rightarrow}{q}\cdot \overset{\rightarrow}{\nabla }T^{{'}}+</math><math>\frac{\mu }{T^{{'}}}\cdot {\phi }^{{'}}</math>
294
|}
295
| style="width: 5px;text-align: right;white-space: nowrap;" | 
296
|}
297
298
The first term represents the generated entropy due to temperature gradient and the second due to the friction effects.
299
300
{| class="formulaSCP" style="width: 100%; text-align: center;" 
301
|-
302
| 
303
{| style="text-align: center; margin:auto;" 
304
|-
305
| <math>\overset{\rightarrow}{q}=-k\cdot gra\overset{\rightarrow}{d}T</math>
306
|}
307
| style="width: 5px;text-align: right;white-space: nowrap;" | 
308
|}
309
310
The dissipation function is written in incompressible flow as follows:
311
312
{| class="formulaSCP" style="width: 100%; text-align: center;" 
313
|-
314
| 
315
{| style="text-align: center; margin:auto;" 
316
|-
317
| <math>{\phi }^{{'}}=2\left[{\left(\frac{\partial V_x^{{'}}}{\partial x^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial V_y^{{'}}}{\partial y^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial V_z^{{'}}}{\partial z^{{'}}}\right)}^2\right]+</math><math>{\left(\frac{\partial V_y^{{'}}}{\partial x^{{'}}}+\frac{\partial V_x^{{'}}}{\partial y^{{'}}}\right)}^2+</math><math>{\left(\frac{\partial V_z^{{'}}}{\partial y^{{'}}}+\frac{\partial V_y^{{'}}}{\partial z^{{'}}}\right)}^2+</math><math>{\left(\frac{\partial V_x^{{'}}}{\partial z^{{'}}}+\frac{\partial V_z^{{'}}}{\partial x^{{'}}}\right)}^2</math>
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
320
|}
321
322
from where the generated entropy is written as
323
324
{| class="formulaSCP" style="width: 100%; text-align: center;" 
325
|-
326
| 
327
{| style="text-align: center; margin:auto;" 
328
|-
329
| <math>S_{gen}^{{'}}=\frac{k}{T_0^{{'}2}}\left[{\left(\frac{\partial T^{{'}}}{\partial x^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial T^{{'}}}{\partial y^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial T^{{'}}}{\partial z^{{'}}}\right)}^2\right]+</math><math>2\left[{\left(\frac{\partial V_x^{{'}}}{\partial x^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial V_y^{{'}}}{\partial y^{{'}}}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial V_z^{{'}}}{\partial z^{{'}}}\right)}^2\right]+</math><math>{\left(\frac{\partial V_y^{{'}}}{\partial x^{{'}}}+\frac{\partial V_x^{{'}}}{\partial y^{{'}}}\right)}^2+</math><math>{\left(\frac{\partial V_z^{{'}}}{\partial y^{{'}}}+\frac{\partial V_y^{{'}}}{\partial z^{{'}}}\right)}^2+</math><math>{\left(\frac{\partial V_x^{{'}}}{\partial z^{{'}}}+\frac{\partial V_z^{{'}}}{\partial x^{{'}}}\right)}^2</math>
330
|}
331
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
332
|}
333
334
After non-dimensionalization, the generated entropy number (dimensionless local entropy generated) is written in the following way as
335
336
{| class="formulaSCP" style="width: 100%; text-align: center;" 
337
|-
338
| 
339
{| style="text-align: center; margin:auto;" 
340
|-
341
| <math>N_s=S_{gen}^{{'}}\frac{1}{k}{\left(\frac{{lT}_0}{\Delta T}\right)}^2</math>
342
|}
343
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
344
|}
345
346
from where
347
348
{| class="formulaSCP" style="width: 100%; text-align: center;" 
349
|-
350
| 
351
{| style="text-align: center; margin:auto;" 
352
|-
353
| <math>N_s=\left[{\left(\frac{\partial T}{\partial x}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial T}{\partial y}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial T}{\partial z}\right)}^2\right]+</math><math>\varphi .\left\{2\left[{\left(\frac{\partial V_x}{\partial x}\right)}^2+\right. \right. </math><math>\left. \left. {\left(\frac{\partial V_y}{\partial y}\right)}^2+\right. \right. </math><math>\left. \left. {\left(\frac{\partial V_z}{\partial z}\right)}^2\right]+\right. </math><math>\left. \left[{\left(\frac{\partial V_y}{\partial x}+\frac{\partial V_x}{\partial y}\right)}^2+\right. \right. </math><math>\left. \left. {\left(\frac{\partial V_z}{\partial y}+\frac{\partial V_y}{\partial z}\right)}^2+\right. \right. </math><math>\left. \left. {\left(\frac{\partial V_x}{\partial z}+\frac{\partial V_z}{\partial x}\right)}^2\right]\right\}</math>
354
|}
355
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
356
|}
357
358
with <math display="inline">\varphi =\frac{\mu {\alpha }^2T_m}{l^2k\Delta T^2}</math> is the irreversibility coefficient.
359
360
The first term of ''N<sub>s</sub>'' represents the local irreversibility due to the temperatures gradients, and it is noted ''N<sub>S</sub>''<sub>-</sub>''<sub>th</sub>''. The second term represents the contribution of the viscous effects in the irreversibility and it is noted ''N<sub>S</sub>''<sub>-</sub>''<sub>fric</sub>''. ''N<sub>s</sub>'' give a good idea on the profile and the distribution of the generated local dimensionless entropy. The total dimensionless generated entropy is written as follows:
361
362
{| class="formulaSCP" style="width: 100%; text-align: center;" 
363
|-
364
| 
365
{| style="text-align: center; margin:auto;" 
366
|-
367
| <math>S_{tot}={\int }_0^1{\int }_0^1{\int }_0^1N_sdv={\int }_0^1{\int }_0^1{\int }_0^1(N_{s\mbox{-}th}+</math><math>N_{s\mbox{-}fr})dv=S_{th}+S_{fr}</math>
368
|}
369
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
370
|}
371
372
Bejan number (Be) is the ratio of heat transfer irreversibility to the total irreversibility due to heat transfer and fluid friction:
373
374
<span id='e0095'></span>
375
{| class="formulaSCP" style="width: 100%; text-align: center;" 
376
|-
377
| 
378
{| style="text-align: center; margin:auto;" 
379
|-
380
| <math>Be=\frac{S_{th}}{S_{th}+S_{fr}}</math>
381
|}
382
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
383
|}
384
385
The local and average Nusselt numbers at the cold wall are given by the following:
386
387
{| class="formulaSCP" style="width: 100%; text-align: center;" 
388
|-
389
| 
390
{| style="text-align: center; margin:auto;" 
391
|-
392
| <math>\mbox{Nu}={\frac{\partial T}{\partial y}}_{y=1}\quad \quad \mbox{and}\quad \quad {\mbox{Nu}}_{av}=</math><math>{\int }_0^1{\int }_0^1Nudxdz</math>
393
|}
394
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
395
|}
396
397
===3.3. Validation of the code===
398
399
Validation of the code is performed against data in published studies. Thus, results are compared with studies by Wakashima and Saitoh [[#b0075|[15]]] and Fusegi et al. [[#b0080|[16]]] for differentially heated cubic cavity and Pr = 0.71 and listed in [[#t0005|Table 1]]. The table shows that the obtained results are acceptable when compared with results in the literature. Also, obtained results are compared by 2D solutions and compared with the literature as seen in [[#f0010|Fig. 2]]. As seen from the figures there is a good agreement between solutions.
400
401
<span id='t0005'></span>
402
403
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
404
|+
405
406
Table 1.
407
408
Comparison of present results with the 3D results of Wakashima and Saitoh [[#b0075|[15]]] and Fusegi et al. [[#b0080|[16]]] for differentially heated cubic cavity and Pr = 0.71.
409
410
|-
411
412
! Ra
413
! Authors
414
! <math display="inline">{\psi }_z</math> (center)
415
! <math display="inline">{\omega }_z</math> (center)
416
! <math display="inline">V_{xmax}</math> (y)
417
! <math display="inline">V_{ymax}</math> (x)
418
! <math display="inline">{\mbox{Nu}}_{av}</math>
419
|-
420
421
| 10<sup>4</sup>
422
| Present work
423
| 0.05528
424
| 1.1063
425
| 0.199(0.826)
426
| 0.221(0.112)
427
| 2.062
428
|-
429
430
| 
431
| Wakashima and Saitoh [[#b0075|[15]]]
432
| 0.05492
433
| 1.1018
434
| 0.198(0.825)
435
| 0.222(0.117)
436
| 2.062
437
|-
438
439
| 
440
| Fusegi et al. [[#b0080|[16]]]
441
| 
442
| 
443
| 0.201(0.817)
444
| 0.225(0.117)
445
| 2.1
446
|-
447
448
| colspan="7" | 
449
|-
450
451
| 10<sup>5</sup>
452
| Present work
453
| 0.034
454
| 0.262
455
| 0.143(0.847)
456
| 0.245(0.064)
457
| 4.378
458
|-
459
460
| 
461
| Wakashima and Saitoh [[#b0075|[15]]]
462
| 0.03403
463
| 0.2573
464
| 0.147(0.85)
465
| 0.246(0.068)
466
| 4.366
467
|-
468
469
| 
470
| Fusegi et al. [[#b0080|[16]]]
471
| 
472
| 
473
| 0.147(0.855)
474
| 0.247(0.065)
475
| 4.361
476
|-
477
478
| colspan="7" | 
479
|-
480
481
| 10<sup>6</sup>
482
| Present work
483
| 0.01972
484
| 0.1284
485
| 0.0832(0.847)
486
| 0.254(0.032)
487
| 8.618
488
|-
489
490
| 
491
| Wakashima and Saitoh [[#b0075|[15]]]
492
| 0.01976
493
| 0.1366
494
| 0.0811(0.86)
495
| 0.2583(0.032)
496
| 8.6097
497
|-
498
499
| 
500
| Fusegi et al. [[#b0080|[16]]]
501
| 
502
| 
503
| 0.0841(0.856)
504
| 0.259(0.033)
505
| 8.77
506
|}
507
508
<span id='f0010'></span>
509
510
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
511
|-
512
|
513
514
515
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr2.jpg|center|485px|Comparison of results of present code with those of Varol and Ozgen (2D) [7].]]
516
517
518
|-
519
| <span style="text-align: center; font-size: 75%;">
520
521
Figure 2.
522
523
Comparison of results of present code with those of Varol and Ozgen (2D) [[#b0035|[7]]].
524
525
</span>
526
|}
527
528
==4. Results and discussion==
529
530
A computational study is performed in this work is to make three dimensional analysis of natural convection and entropy generation. A computer code was written by using Fortran platform. All results are presented for Ra = 10<sup>5</sup>, Pr = 0.07, and thermal conductivity ratio changes from 0.01 to 100.
531
532
Particle trajectories are presented in [[#f0015|Fig. 3]] for different inclination angles of the fin and Rc = 1.0. This figure gives an idea on particle transport way inside the cavity. As seen from the figures, particle trajectories are continued for ''θ'' = 0°. These figures show that two-dimensional solutions are not enough for solution of cubic cavity. Complexity of trajectories is dependent on inclination angle of the fin and it becomes messy behind the fin due to narrow space. Iso-surfaces of temperature for Rc = 1.0 at different inclination angles of the fin are given in [[#f0020|Fig. 4]]. This figure gives an idea on three dimensional distribution of temperature. The distribution of temperature is almost parallel to horizontal walls near the walls. However, they exhibit a parallel distribution to each other near the top side of the fin for ''θ'' = 60° and 30°. In case of ''θ'' = −30° and ''θ'' = −60°, temperature distribution behaves almost as empty cavity due to values of thermal conductivity value. As shown in [[#f0025|Fig. 5]] the fin is the main factor to manager of the flow and heat transfer inside the cavity. This is clearer from the velocity projections in [[#f0025|Fig. 5]] at different inclination angles and different thermal conductivity ratios. In case of ''θ'' = 60°, the flow is captured behind the fin and dimension of its main eye increases with increase in thermal conductivity due to increase in flow strength. The main flow does not change with thermal conductivity ratio. Similar distribution is observed for ''θ'' = 30° and velocity distribution is completely symmetric for ''θ'' = 0°. The fin separates the flow two ways in case of ''θ'' = −30°. A number of cells are affected from the thermal conductivity and almost a triangular cross-sectional cavity is formed behind the fin for ''θ'' = −60° and the flow behaves as almost empty cavity at the remaining part and the main flow is not affected by changing the thermal conductivity ratio.
533
534
<span id='f0015'></span>
535
536
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
537
|-
538
|
539
540
541
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr3.jpg|center|567px|Particle trajectories for Rc=1 at different inclination angles of the fin.]]
542
543
544
|-
545
| <span style="text-align: center; font-size: 75%;">
546
547
Figure 3.
548
549
Particle trajectories for ''R<sub>c</sub>'' = 1 at different inclination angles of the fin.
550
551
</span>
552
|}
553
554
<span id='f0020'></span>
555
556
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
557
|-
558
|
559
560
561
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr4.jpg|center|572px|Iso-surfaces of temperature for Rc=1 at different inclination angles of the fin.]]
562
563
564
|-
565
| <span style="text-align: center; font-size: 75%;">
566
567
Figure 4.
568
569
Iso-surfaces of temperature for ''R<sub>c</sub>'' = 1 at different inclination angles of the fin.
570
571
</span>
572
|}
573
574
<span id='f0025'></span>
575
576
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
577
|-
578
|
579
580
581
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr5.jpg|center|531px|Velocity projection in z=0.5 plan at different inclination angles of the fin and ...]]
582
583
584
|-
585
| <span style="text-align: center; font-size: 75%;">
586
587
Figure 5.
588
589
Velocity projection in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
590
591
</span>
592
|}
593
594
[[#f0030|Fig. 6]] illustrates the isotherms for different inclination angles of the fin and thermal conductivity ratio. In case of Rc = 1.0, the fin makes minor effects on temperature distribution inside the cavity. For ''θ'' = 60°, isotherms are cumulated on fin at Rc = 0.01 and the fluid behind the fin becomes stagnant due to low conductivity of the fin. This situation is valid for the case of ''θ'' = 30°. For the case of high conductivity, inclination angle of the fin becomes an important parameter. For ''θ'' = 0°, symmetric distribution is observed for temperature for all values of thermal conductivity due to bottom heating of the cavity.
595
596
<span id='f0030'></span>
597
598
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
599
|-
600
|
601
602
603
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr6.jpg|center|532px|Isotherms in z=0.5 plan at different inclination angles of the fin and different ...]]
604
605
606
|-
607
| <span style="text-align: center; font-size: 75%;">
608
609
Figure 6.
610
611
Isotherms in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
612
613
</span>
614
|}
615
616
[[#f0035|Fig. 7]] is plotted to show the local entropy generation due to heat transfer for different inclination angles of the fin and different thermal conductivity ratios. As seen from the figure, inclination angle of the fin plays an important role on distribution of local entropy generation. In case of ''θ'' = −60° and Rc = 0.01, local entropy generation contours are accumulated inside the fin due to lower thermal conductivity ratio. For Rc = 1.0, the location of the fin becomes insignificant on entropy generation. However, edge of the fin plays an important role on entropy generation for Rc = 100. Almost symmetric distribution is observed for ''θ'' = 0°, and plume like distribution is observed for all values of thermal conductivity ratios due to separation effect of the fin to cavity. For the positive values of inclination angles, the flow inside the cavity is deferred to right top corner and energy is lost at that part mostly.
617
618
<span id='f0035'></span>
619
620
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
621
|-
622
|
623
624
625
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr7.jpg|center|569px|Local entropy generation due to heat transfer in z=0.5 plan at different ...]]
626
627
628
|-
629
| <span style="text-align: center; font-size: 75%;">
630
631
Figure 7.
632
633
Local entropy generation due to heat transfer in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
634
635
</span>
636
|}
637
638
Local entropy generation due to friction is illustrated in [[#f0040|Fig. 8]]. Effects of inclination angle of the fin and thermal conductivity ratio are evaluated in this figure. It can be seen that thermal conductivity ratio is not effective on entropy distribution and contours are cluster middle of the right vertical wall and bottom of the inclined fin for ''θ'' = 60°. Bottom edge of the fin affects entropy generation due to moving flow from the bottom and flow separation at that point for ''θ'' = 30°. Similar situation is observed for ''θ'' = 0° but top and bottom edges of the fin become effective. When the fin turns the negative axis only top edge becomes effective on entropy generation. For ''θ'' = −60°, thermal conductivity ratio plays an important role and cumulated entropy contour moves from bottom to edge of the fin while thermal conductivity increases.
639
640
<span id='f0040'></span>
641
642
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
643
|-
644
|
645
646
647
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr8.jpg|center|566px|Local entropy generation due to friction in z=0.5 plan at different inclination ...]]
648
649
650
|-
651
| <span style="text-align: center; font-size: 75%;">
652
653
Figure 8.
654
655
Local entropy generation due to friction in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
656
657
</span>
658
|}
659
660
Local total entropy generation is shown in [[#f0045|Fig. 9]] in ''z'' = 0.5 plan for different inclination angles of the fin and different thermal conductivity ratios. The figure shows that edge of the fin becomes effective on entropy generation for all parameters due to flow separation at that point and impinged flow onto the fin. Also, entropy generation changes place to place inside the cavity based on flow distribution and position of the fin. As obtained from the flow and temperature distribution, local entropy distribution shows symmetrical distribution for ''θ'' = 0°. The inclination angle of the fin can be a control parameter for energy saving. For example, entropy generation values become stronger near the edge and top side of the cavity for ''θ'' = 60 and Rc = 100. Edge effect of the fin becomes minimum for Rc = 1.0 for all values of inclination.
661
662
<span id='f0045'></span>
663
664
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
665
|-
666
|
667
668
669
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr9.jpg|center|569px|Local total entropy generation in z=0.5 plan at different inclination angles of ...]]
670
671
672
|-
673
| <span style="text-align: center; font-size: 75%;">
674
675
Figure 9.
676
677
Local total entropy generation in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
678
679
</span>
680
|}
681
682
[[#f0050|Fig. 10]] presents the distribution of local Bejan number which is calculated via Eq. [[#e0095|(10)]]. This distribution is given in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios. As indicated earlier that the presence of the fin is a power source for entropy generation, [[#f0055|Fig. 11]] illustrates the variation of average Nusselt number with the considered parameters of fin angle and thermal conductivity ratio. The average heat transfer shows almost same results for −30° and 30° due to the occurrence of the same effects. In case of Rc = 1.0, a peak is observed. However, higher heat transfer is formed for other inclination angle of the fin and maximum heat transfer is formed for −60 degree at Rc = 100.
683
684
<span id='f0050'></span>
685
686
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
687
|-
688
|
689
690
691
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr10.jpg|center|559px|Local Bejan number in z=0.5 plan at different inclination angles of the fin and ...]]
692
693
694
|-
695
| <span style="text-align: center; font-size: 75%;">
696
697
Figure 10.
698
699
Local Bejan number in ''z'' = 0.5 plan at different inclination angles of the fin and different thermal conductivity ratios.
700
701
</span>
702
|}
703
704
<span id='f0055'></span>
705
706
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
707
|-
708
|
709
710
711
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr11.jpg|center|355px|Variation of average Nusselt number versus Rc at different inclination angles.]]
712
713
714
|-
715
| <span style="text-align: center; font-size: 75%;">
716
717
Figure 11.
718
719
Variation of average Nusselt number versus ''R<sub>c</sub>'' at different inclination angles.
720
721
</span>
722
|}
723
724
[[#f0060|Fig. 12]] displays the variation of entropy generation due to heat transfer for different parameters. ''S<sub>th</sub>'' value is decreased until Rc = 1.0 and it goes constant due to higher value of thermal conductivity ratio. The minimum value is formed for −30° due to motionless flow under the fin. Entropy generation due to friction for different values of thermal conductivity and inclination angle is presented in [[#f0065|Fig. 13]]. The figures show that position of the fin becomes very effective on entropy generation due to friction. Values are decreased with increase in thermal conductivity almost linearly except −60° of the fin angle.
725
726
<span id='f0060'></span>
727
728
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
729
|-
730
|
731
732
733
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr12.jpg|center|355px|Entropy generation due to heat transfer versus Rc at different inclination ...]]
734
735
736
|-
737
| <span style="text-align: center; font-size: 75%;">
738
739
Figure 12.
740
741
Entropy generation due to heat transfer versus ''R<sub>c</sub>'' at different inclination angles.
742
743
</span>
744
|}
745
746
<span id='f0065'></span>
747
748
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
749
|-
750
|
751
752
753
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr13.jpg|center|351px|Entropy generation due to friction versus Rc at different inclination angles.]]
754
755
756
|-
757
| <span style="text-align: center; font-size: 75%;">
758
759
Figure 13.
760
761
Entropy generation due to friction versus ''R<sub>c</sub>'' at different inclination angles.
762
763
</span>
764
|}
765
766
Variation of total entropy generation with different inclination angles of the fin and thermal conductivity ratio is presented in [[#f0070|Fig. 14]]. The figure gives that these two parameters are good control parameter or optimization parameter for energy consumption. In other words, maximization or minimization is possible inside the cavity by using fin. As seen from the figure, total entropy generation decreases up to Rc = 1.0 and it becomes constant after these value. It is noted that the fin is more conductive for higher value of Rc. The highest entropy generation occurs for −30 and the lowest value is observed for 0°. For all values there is a minimum point around Rc = 1.0.
767
768
<span id='f0070'></span>
769
770
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
771
|-
772
|
773
774
775
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr14.jpg|center|355px|Total entropy generation versus Rc at different inclination angles.]]
776
777
778
|-
779
| <span style="text-align: center; font-size: 75%;">
780
781
Figure 14.
782
783
Total entropy generation versus ''R<sub>c</sub>'' at different inclination angles.
784
785
</span>
786
|}
787
788
[[#f0075|Fig. 15]] illustrates the variation of Bejan number versus Rc for different inclination angles of the conductive fin. As well known from the literature that Bejan number gives the ratio of heat transfer and fluid friction, thus, as seen from the figure, Bejan number decreases with thermal conductivity ratio till Rc = 1.0 and it becomes almost constant for all values of thermal conductivity ratio.
789
790
<span id='f0075'></span>
791
792
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
793
|-
794
|
795
796
797
[[Image:draft_Content_502495065-1-s2.0-S1110016816300096-gr15.jpg|center|356px|Variation of Bejan number versus Rc at different inclination angle.]]
798
799
800
|-
801
| <span style="text-align: center; font-size: 75%;">
802
803
Figure 15.
804
805
Variation of Bejan number versus ''R<sub>c</sub>'' at different inclination angle.
806
807
</span>
808
|}
809
810
==5. Conclusions==
811
812
A three dimensional computational study has been performed in this work in an inclined fin located cavity to obtain heat transfer, temperature distribution, fluid flow and entropy generation. In this work, parameters are taken as Ra = 10<sup>5</sup>, Pr = 0.7, ''R<sub>c</sub>  '' (conductivities ratio) changes from 0.01 to 100 and irreversibility coefficient is taken as <math display="inline">\varphi ={10}^{-5}</math>. Firstly, three dimensional solution in a cubic cavity brings some advantages according to two dimensional solution to see the effects of heat and fluid flow in different directions. The main effective parameter on heat and fluid flow is the inclination angle of the fin. There is symmetrical distribution on temperature distribution and flow field in a cavity when ''θ'' = 0°. Edge of the fin is extremely effective on entropy generation and Bejan number for all studied parameters. Entropy generation distribution is also obtained as symmetric for all values of thermal conductivity ratio. But higher values of thermal conductivity ratio (Rc ⩾ 1) are not effective on entropy generation. For Rc = 1, there is a maximum or minimum value on heat transfer according to inclination angle of the fin. The highest heat transfer is seen for the −60° of the fin angle and Rc = 100. It is an interesting result that heat transfer gives same results for −30° and 30° of the fin angle. Both entropy generation and heat transfer become higher for positive values of inclination angle. Entropy generation due to heat transfer becomes dominant onto friction one.
813
814
==References==
815
816
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='b0005'></span>
817
[[#b0005|[1]]] Y. Varol, H.F. Oztop, F. Ozgen, A. Koca; Experimental and numerical study on laminar natural convection in a cavity heated from bottom due to an inclined fin; Heat Mass Transfer, 48 (2012), pp. 61–70</li>
818
<li><span id='b0010'></span>
819
[[#b0010|[2]]] F. Ozgen, Y. Varol, H.F. Oztop; Effects of inclined baffle location and Prandtl number on natural convection in a cavity; Tur. J. Sci. Tech., 9 (2014), pp. 117–126</li>
820
<li><span id='b0015'></span>
821
[[#b0015|[3]]] B. Li, C. Byon; Orientation effects on thermal performance of radial sinks with a concentric ring subject to natural convection; Int. J. Heat Mass Transfer, 90 (2015), pp. 102–108</li>
822
<li><span id='b0020'></span>
823
[[#b0020|[4]]] S. Saravanan, C. Sivaraj; Combined natural convection and thermal radiation in a square cavity with a nonuniformly heated plate; Comput. Fluids, 117 (2015), pp. 125–138</li>
824
<li><span id='b0025'></span>
825
[[#b0025|[5]]] S. Saravanan, A.R. Vidhya kumar; Natural convection in square cavity with heat generating baffles; Appl. Math. Comput., 244 (2014), pp. 1–9</li>
826
<li><span id='b0030'></span>
827
[[#b0030|[6]]] O. Ghazian, H. Rezvantalab, M. Ashjaee; Experimental investigation of natural convection in an enclosure with partial partitions at different angles; Therm. Sci., 18 (2014)</li>
828
<li><span id='b0035'></span>
829
[[#b0035|[7]]] Y. Varol, F. Ozgen; Effect of inclined thick fin on natural convection in a cavity heated from bottom; Prog. Comput. Fluid Dyn., 15 (2015)</li>
830
<li><span id='b0040'></span>
831
[[#b0040|[8]]] F. Ozgen, Y. Varol, H.F. Oztop; Numerical study of mixed convection in a horizontal channel filled with a fluid-saturated porous medium; J. Therm. Sci. Technol., 33 (2013), pp. 155–163</li>
832
<li><span id='b0045'></span>
833
[[#b0045|[9]]] H.F. Öztop, K. Al-Salem; A review on entropy generation in natural and mixed convection heat transfer for energy systems; Renew. Sustain. Environ. Rev., 16 (2012), pp. 911–920</li>
834
<li><span id='b0050'></span>
835
[[#b0050|[10]]] A. Sciacovelli, V. Verda, E. Sciubba; Entropy generation analysis as a design tool-a review; Renew. Sustain. Environ. Rev., 43 (2015), pp. 1167–1181</li>
836
<li><span id='b0055'></span>
837
[[#b0055|[11]]] S.Z. Shuja, B.S. Yilbas, M.O. Budair; Natural convection in a square cavity with a heat generating body: entropy consideration; Heat Mass Transfer, 36 (2000), pp. 343–350</li>
838
<li><span id='b0060'></span>
839
[[#b0060|[12]]] H. Khorasanizadeh, J. Amani, M. Nikfar; Numerical investigation of Cu-water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle; Sharif Un. Tech. Scientia Itanica, 19 (2012), pp. 1996–2003</li>
840
<li><span id='b0065'></span>
841
[[#b0065|[13]]] A. Mukhopadhyay; Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources’; Int. Commun. Heat Mass Transfer, 37 (2010), pp. 867–872</li>
842
<li><span id='b0070'></span>
843
[[#b0070|[14]]] M. Famouri, K. Hooman; Entropy generation for natural convection by heated partitions in a cavity; Int. Commun. Heat Mass Transfer, 35 (2008), pp. 492–502</li>
844
<li><span id='b0075'></span>
845
[[#b0075|[15]]] S. Wakashima, T.S. Saitoh; Benchmark solutions for natural convection in a cubic cavity using the high-order time–space method; Int. J. Heat Mass Transfer, 47 (2004), pp. 853–864</li>
846
<li><span id='b0080'></span>
847
[[#b0080|[16]]] T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk; A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure; Int. J. Heat Mass Transfer, 34 (1991), pp. 1543–1557</li>
848
<li><span id='b0085'></span>
849
[[#b0085|[17]]] M.A. Rosen; Second-law analysis: approach and implications; Int. J. Energy Res., 33 (1999), pp. 415–429</li>
850
<li><span id='b0090'></span>
851
[[#b0090|[18]]] A. Bejan; A second-law analysis in heat transfer; Energy, 5 (1980), pp. 721–732</li>
852
<li><span id='b0095'></span>
853
[[#b0095|[19]]] A. Bejan; Entropy Generation through Heat and Fluid Flow; Wiley, New York (1982)</li>
854
<li><span id='b0100'></span>
855
[[#b0100|[20]]] W.M. El-Maghlany, K.M. Saqr, M.A. Teamah; Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity; Energy Convers. Mange., 85 (2014), pp. 333–342</li>
856
<li><span id='b0105'></span>
857
[[#b0105|[21]]] U. Narusawa; The second-law analysis of mixed convection in rectangular ducts; Heat Mass Transfer, 37 (2001), pp. 197–203</li>
858
<li><span id='b0110'></span>
859
[[#b0110|[22]]] A.C. Baytas; Entropy generation for natural convection in an inclined porous cavity; Int. J. Heat Mass Transfer, 43 (2000), pp. 2089–2099</li>
860
<li><span id='b0115'></span>
861
[[#b0115|[23]]] U. Narusawa; The second-law analysis of convective pattern change in a rectangular cavity; J. Fluid Mech., 392 (1999), pp. 361–377</li>
862
<li><span id='b0120'></span>
863
[[#b0120|[24]]] Nemat Dalir; Numerical study of entropy generation for forced convection flow and heat transfer of a Jeffrey fluid over a stretching sheet; Alexandria Eng. J., 53 (4) (2014), pp. 769–778</li>
864
<li><span id='b0125'></span>
865
[[#b0125|[25]]] S. Das, A.S. Banu, R.N. Jana, O.D. Makinde; Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating; Alexandria Eng. J., 54 (3) (2015), pp. 325–337</li>
866
</ol>
867

Return to Kolsi et al 2016a.

Back to Top

Document information

Published on 12/04/17

Licence: Other

Document Score

0

Views 39
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?