S. Idelsohn, J. Gimenez, N. Nigro. Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space. Int J Numer Meth Fluids 86(12) (2017) DOI 10.1002/fld.4477
M. Luo, C. Koh, M. Gao, W. Bai. A particle method for two-phase flows with large density difference. Int. J. Numer. Meth. Engng 103(4) (2015) DOI 10.1002/nme.4884
P. Becker, S. Idelsohn. A multiresolution strategy for solving landslides using the Particle Finite Element Method. Acta Geotech. 11(3) (2016) DOI 10.1007/s11440-016-0464-6
A. Larese. A Lagrangian PFEM approach for non-Newtonian viscoplastic materials. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(3-4) DOI 10.1016/j.rimni.2016.07.002
M. Zhu, I. Elkhetali, M. Scott. Validation of
OpenSees
for Tsunami Loading on Bridge Superstructures. J. Bridge Eng. 23(4) DOI 10.1061/(asce)be.1943-5592.0001221
J. Chen, M. Hillman, S. Chi. Meshfree Methods: Progress Made after 20 Years. J. Eng. Mech. 143(4) DOI 10.1061/(asce)em.1943-7889.0001176
F. Salazar, J. San-Mauro, M. Celigueta, E. Oñate. Air demand estimation in bottom outlets with the particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0117-4
P. Nadukandi, B. Servan-Camas, P. Becker, J. Garcia-Espinosa. Seakeeping with the semi-Lagrangian particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0127-2
J. Gimenez, D. Ramajo, S. Márquez Damián, N. Nigro, S. Idelsohn. An assessment of the potential of PFEM-2 for solving long real-time industrial applications. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0135-2
J. Marti, P. Ryzhakov. An explicit/implicit Runge–Kutta-based PFEM model for the simulation of thermally coupled incompressible flows. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00229-0
F. Del Pin, C. Huang, I. Çaldichoury, R. Paz. On the performance and accuracy of PFEM-2 in the solution of biomedical benchmarks. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00241-4
M. Cremonesi, S. Meduri, U. Perego. Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00245-0
R. Bravo, P. Ortiz, S. Idelsohn, P. Becker. Sediment transport problems by the particle finite element method (PFEM). Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00255-y
J. Colom-Cobb, J. Garcia-Espinosa, B. Servan-Camas, P. Nadukandi. A second-order semi-Lagrangian particle finite element method for fluid flows. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00258-9
J. Gimenez, P. Morin, N. Nigro, S. Idelsohn. Numerical Comparison of the Particle Finite Element Method Against an Eulerian Formulation. (2016) DOI 10.1007/978-3-319-40827-9_2
N. Nigro, J. Gimenez, S. Idelsohn. Recent Advances in the Particle Finite Element Method Towards More Complex Fluid Flow Applications. (2014) DOI 10.1007/978-3-319-06136-8_12
O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9
P. Becker, S. Idelsohn, E. Oñate. A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Comput Mech 55(6) (2014) DOI 10.1007/s00466-014-1107-0
P. Nadukandi. Numerically stable formulas for a particle-based explicit exponential integrator. Comput Mech 55(5) (2015) DOI 10.1007/s00466-015-1142-5
Y. Bazilevs, K. Kamran, G. Moutsanidis, D. Benson, E. Oñate. A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations. Comput Mech 60(1) (2017) DOI 10.1007/s00466-017-1394-3