You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Reliable iterative techniques for solving the KS equation arising in fluid flow ==
3
-->
4
==Abstract==
5
6
In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide <math>\omega _{n}</math>-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.
7
8
'''Keywords''': Kuramoto-Sivashinsky equation, Laplace transform, natural decomposition method (NDM), Temimi-Ansari method (TAM)
9
10
==1. Introduction==
11
12
Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.
13
14
Gregory I. Sivashinsky measured the situation of a laminar flaming front in 1977. When Yoshiki Kuramoto simultaneously designed diffusion-induced chaos in a three-dimensional simulation of the Belousov-Zabotinskii transformation [10-13], he created a certain problem. The result of their collaboration is known as the Kuramoto-Sivashinsky (KS) model. This system describes the variations in the orientation of the combustion front, the flow of a liquid down a circular surface, and a dynamically specific oscillating of chemical compounds in a fluid that is homogeneous [14-16]. It creates chaotic behavior and necessitates a result resembling waves traveling in a finite space domain without changing scale. That has numerous implementations in a variety of concepts, such as response diffusion systems [17], thin film hydrodynamics [18], and front burn instability [19], as well as lengthy waves on functionality in a few noxious fluids [20].
15
16
The general Kuramoto-Sivashinsky equation (fractional Kuramoto-Sivashisky equation) is:
17
18
{| class="formulaSCP" style="width: 100%; text-align: left;" 
19
|-
20
| 
21
{| style="text-align: left; margin:auto;width: 100%;" 
22
|-
23
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega{+\omega}\frac{\partial \omega }{\partial \vartheta }+\alpha \frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\gamma \frac{\partial ^{3}\omega }{\partial \vartheta ^{3}}+\eta \frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0,\quad 0<\mu \leq{1},\quad \vartheta \in [a,b],\quad \iota{>0.} </math>
24
|}
25
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
26
|}
27
28
When <math display="inline">\alpha =\eta=1</math> and <math display="inline">\gamma=0</math>, the equation proceeds to the Kuramoto-Sivashinsky equation [9], which was developed by Kuramoto and Sivashinsky during their investigation of phase turbulence in the Belousov-Zhabotinsky reaction. The Kuramoto-Sivashinsky equation is a fourth-order nonlinear partial differential equation that plays a significant role in the study of fluid dynamics, combustion, and other areas of physics and mathematics.
29
30
Due to its wide range of applications, it has garnered a great deal of interest in the search for analytical and numerical solutions. Thus, the solutions of the KS equation have been accomplished through a variety of techniques, such as the finite difference method [21-22], the Exponential Cubic BSpline Collocation Method [23], the Subequation Method [24], the Adomian Decomposition Method [25-26], the Double Reduction Theory [27], the Modified Kudrayshov Method [28], the Expfunction Method [29], the q-homotopy analysis transform method [30], the homotopy analysis method [31-32], a semianalytical method [33], the Reduced Differential Transform Method [34], and numerous other techniques.
31
32
In this current research, two methods for solving the fractional Kuramoto-Sivashisky equation were implemented. The first method is a semi-analytical iterative method. Temimi and Ansari have proposed this method, namely the TAM. They have lately presented this method to solve linear and nonlinear ODEs and PDEs [35-36]. Recent applications of this iterative method have yielded exact and approximate solutions to several problems. As opposed to the VIM, the TAM doesn't require any restricted hypotheses for non-linear terms, such as the ADM, the prerequisite for the referred to as Adomian polynomial, thereby averting extensive computational work and requiring no additional parameters. In addition, it avoided homotopy construction and the solution of the corresponding equations for algebra, as in HPM.  
33
34
The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.
35
36
==2. Preliminaries to FC==
37
38
Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39].
39
40
===Definition 1===
41
42
The Riemann-Liouville integral of a function <math display="inline">f(\iota )\in C_{\delta }(\delta \geq{-1)}</math> having fractional order <math display="inline">(\sigma{>0)}</math> is presented as follows
43
44
{| class="formulaSCP" style="width: 100%; text-align: left;" 
45
|-
46
| 
47
{| style="text-align: left; margin:auto;width: 100%;" 
48
|-
49
| style="text-align: center;" | <math>J^{\sigma }f(\iota )=\frac{1}{\Gamma (\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{\sigma{-1}}f(\upsilon )d\upsilon{.} </math>
50
|}
51
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
52
|}
53
54
===Definition 2 ===
55
56
The Caputo fractional order derivative of <math display="inline">f\in C_{-1}^{n}</math> is presented as
57
58
{| class="formulaSCP" style="width: 100%; text-align: left;" 
59
|-
60
| 
61
{| style="text-align: left; margin:auto;width: 100%;" 
62
|-
63
| style="text-align: center;" | <math>D_{\iota }^{\sigma }=\begin{cases}\displaystyle\frac{d^{n}f(\iota )}{d\iota ^{n}},\left(\sigma =n\in N\right),\\ \displaystyle\frac{1}{\Gamma (n-\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{(n-\sigma{-1)}}f^{(n)}(\upsilon )d\upsilon ,\left((n-1)<\sigma{<}n,n\in N\right.). \end{cases} </math>
64
|}
65
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
66
|}
67
68
===Definition 3===
69
70
The natural transform of <math display="inline">g(\iota )</math> is defined as [40-41]
71
72
{| class="formulaSCP" style="width: 100%; text-align: left;" 
73
|-
74
| 
75
{| style="text-align: left; margin:auto;width: 100%;" 
76
|-
77
| style="text-align: center;" | <math>N^{+}[g(\iota )]=Q(s,u)=\frac{1}{u}\int _{0}^{\infty}e ^{\frac{-s\iota }{u}}g(\iota )d(\iota );s,\iota{>0}, </math>
78
|}
79
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
80
|}
81
82
where <math display="inline">s</math> and <math display="inline">u</math> are the transform variables.
83
84
The inverse natural transform of a function is defined by
85
86
{| class="formulaSCP" style="width: 100%; text-align: left;" 
87
|-
88
| 
89
{| style="text-align: left; margin:auto;width: 100%;" 
90
|-
91
| style="text-align: center;" | <math>N^{-}[Q(s,u)]=g(\iota )=\frac{1}{2\pi i}\int _{p-i\infty}^{p+i\infty}e ^{\frac{-s\iota }{u}}Q(s,u)d(s), </math>
92
|}
93
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
94
|}
95
96
where <math display="inline">s</math> and <math display="inline">u</math> are the natural transform variables and <math display="inline">p</math> is a real constant and the integral is taken along <math display="inline">s=p</math> in the complex plane  <math display="inline">s=\vartheta{+}iy</math>.
97
98
===Definition 4===
99
100
Natural Transform of nth derivative If <math display="inline">g^{(n)}(\iota )</math> is the nth derivative of function <math display="inline">g(\iota )</math> is given by,
101
102
{| class="formulaSCP" style="width: 100%; text-align: left;" 
103
|-
104
| 
105
{| style="text-align: left; margin:auto;width: 100%;" 
106
|-
107
| style="text-align: center;" | <math>N[g^{(n)}(\iota )]=Q_{n}(s,u)=\frac{s^{n}}{u^{n}}Q(s,u)-\sum _{k=0}^{n-1}\frac{s^{n-(k+1)}}{u^{n-k}}g^{(k)}(0),n\geq{1.} </math>
108
|}
109
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
110
|}
111
112
==3. The fundamental ideas of two iterative approaches==
113
114
An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.
115
116
===3.1 Basic Procedure for the fractional TAM ===
117
118
The general nonlinear fractional partial differential equation is a mathematical equation that may be used to represent the essential concepts of the suggested technique as
119
120
<span id="eq-7"></span>
121
{| class="formulaSCP" style="width: 100%; text-align: left;" 
122
|-
123
| 
124
{| style="text-align: left; margin:auto;width: 100%;" 
125
|-
126
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)+\Phi \left(\omega (\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\;n-1<\sigma \leq n, </math>
127
|}
128
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
129
|}
130
131
combined with the independent variable <math display="inline">\vartheta </math>, dependent variable <math display="inline">\iota </math>, unknown function <math display="inline">\omega (\vartheta ,\iota )</math> and boundary conditions
132
133
{| class="formulaSCP" style="width: 100%; text-align: left;" 
134
|-
135
| 
136
{| style="text-align: left; margin:auto;width: 100%;" 
137
|-
138
| style="text-align: center;" | <math> \mathcal{B}\left(\omega ,\frac{\partial \omega }{\partial \vartheta }\right)=0, </math>
139
|}
140
|}
141
142
where <math display="inline">\Upsilon =D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math> is the Caputo fractional derivative, <math display="inline">\Phi </math> is representing the generic differential operators, the continuous functions are shown in <math display="inline">w(\vartheta ,\iota )</math> and the boundary operator is represented by <math display="inline">\mathcal{B}</math>. The main request made here is for the differential operator <math display="inline">\Upsilon </math> , which is general. However, if necessary, we can combine a number of linear components with nonlinear terms.
143
144
The following describes how the suggested method operates. The starting condition is obtained by removing the nonlinear portion as
145
146
{| class="formulaSCP" style="width: 100%; text-align: left;" 
147
|-
148
| 
149
{| style="text-align: left; margin:auto;width: 100%;" 
150
|-
151
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{0}\left(\vartheta ,\iota \right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{0},\frac{\partial \omega _{0}}{\partial \vartheta }\right)=0. </math>
152
|}
153
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
154
|}
155
156
By resolving the following issues, the next approximations of solutions are produced:
157
158
{| class="formulaSCP" style="width: 100%; text-align: left;" 
159
|-
160
| 
161
{| style="text-align: left; margin:auto;width: 100%;" 
162
|-
163
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{1},\frac{\partial \omega _{1}}{\partial \vartheta }\right)=0. </math>
164
|}
165
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
166
|}
167
168
As a result, we have a simple iterative process for solving a group of issues
169
170
<span id="eq-10"></span>
171
{| class="formulaSCP" style="width: 100%; text-align: left;" 
172
|-
173
| 
174
{| style="text-align: left; margin:auto;width: 100%;" 
175
|-
176
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{n+1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{n}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{n+1},\frac{\partial \omega _{n+1}}{\partial \vartheta }\right)=0. </math>
177
|}
178
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
179
|}
180
181
In this technique, it is crucial to remember that any of the <math display="inline">\omega _{n+1}\left(\vartheta ,\iota \right)</math> is individually a solution to the problem (Eq. [[#eq-7|(7)]]). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue (Eq. [[#eq-7|(7)]]) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as
182
183
<span id="eq-11"></span>
184
{| class="formulaSCP" style="width: 100%; text-align: left;" 
185
|-
186
| 
187
{| style="text-align: left; margin:auto;width: 100%;" 
188
|-
189
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptstyle {\scriptscriptstyle n\rightarrow \infty }}} {\lim} \omega_{n} (\vartheta ,\iota{)}. </math>
190
|}
191
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
192
|}
193
194
===3.2 Basic Procedure for the fractional NDM===
195
196
The following examples demonstrate how the recommended approach is based on the theory and method for solving fractional nonlinear partial differential equations:
197
198
<span id="eq-12"></span>
199
{| class="formulaSCP" style="width: 100%; text-align: left;" 
200
|-
201
| 
202
{| style="text-align: left; margin:auto;width: 100%;" 
203
|-
204
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega \left(\vartheta ,\iota \right)+\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )  =  \hbar \left(\vartheta ,\iota \right),\;n-1<\sigma \leq n, </math>
205
|}
206
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
207
|}
208
209
with the initial condition
210
211
{| class="formulaSCP" style="width: 100%; text-align: left;" 
212
|-
213
| 
214
{| style="text-align: left; margin:auto;width: 100%;" 
215
|-
216
| style="text-align: center;" | <math>\omega \left(\vartheta ,0\right) =  v\left(\vartheta \right), </math>
217
|}
218
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
219
|}
220
221
where the Caputo operator of <math display="inline">\omega \left(\vartheta ,\iota \right)</math> is denoted by <math display="inline">D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math>, the linear function is denoted by <math display="inline">\mathcal{R}</math>, the non-linear function is denoted by <math display="inline">\mathcal{F}</math> and the source term is denoted by <math display="inline">\hbar (\vartheta ,\iota )</math>. Applying the NT to Eq. ([[#eq-12|12]]) and employing definition 5, we obtain
222
223
{| class="formulaSCP" style="width: 100%; text-align: left;" 
224
|-
225
| 
226
{| style="text-align: left; margin:auto;width: 100%;" 
227
|-
228
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[\omega \left(\vartheta ,\iota \right)\right] =  \frac{q^{\sigma }}{s^{\sigma }}\sum _{i=0}^{n-1}\frac{q^{i-\sigma }}{s^{i+1-\sigma }}\left[D^{i}\omega \left(\vartheta ,\iota \right)\right]_{\iota=0}+</math> <math>\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)\right]-\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )\right]. </math>
229
|}
230
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
231
|}
232
233
Applying the inverse NT to the previous equation, we get
234
235
{| class="formulaSCP" style="width: 100%; text-align: left;" 
236
|-
237
| 
238
{| style="text-align: left; margin:auto;width: 100%;" 
239
|-
240
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
241
|}
242
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
243
|}
244
245
<math display="inline">\mathcal{H}\left(\vartheta ,\iota \right)</math> exists based on the provided initial condition and nonhomogeneous term. Let's suppose that an infinite series solution has the form
246
247
{| class="formulaSCP" style="width: 100%; text-align: left;" 
248
|-
249
| 
250
{| style="text-align: left; margin:auto;width: 100%;" 
251
|-
252
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right)=\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right),\qquad \mathcal{F}\omega (\vartheta ,\iota )=\sum _{n=0}^{\infty}A_{n}, </math>
253
|}
254
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
255
|}
256
257
where <math display="inline">A_{n}</math> denotes the nonlinear term of <math display="inline">\mathcal{F}\omega (\vartheta ,\iota )</math>, then we get
258
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;width: 100%;" 
263
|-
264
| style="text-align: center;" | <math>\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\zeta }}{s^{\zeta }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
265
|}
266
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
267
|}
268
269
Ultimately, the analytical solutions are presented in the following form:
270
271
{| class="formulaSCP" style="width: 100%; text-align: left;" 
272
|-
273
| 
274
{| style="text-align: left; margin:auto;width: 100%;" 
275
|-
276
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \sum _{n=0}^{\infty} \omega_{n}\left(\vartheta ,\iota \right). </math>
277
|}
278
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
279
|}
280
281
==4. Numerical examples of the KS models==
282
283
This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.
284
285
===4.1 Example 1===
286
287
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
288
289
<span id="eq-19"></span>
290
{| class="formulaSCP" style="width: 100%; text-align: left;" 
291
|-
292
| 
293
{| style="text-align: left; margin:auto;width: 100%;" 
294
|-
295
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
296
|}
297
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
298
|}
299
300
with initial condition
301
302
{| class="formulaSCP" style="width: 100%; text-align: left;" 
303
|-
304
| 
305
{| style="text-align: left; margin:auto;width: 100%;" 
306
|-
307
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
308
|}
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
310
|}
311
312
The two iterative approaches that have been suggested will be used to resolve this issue.
313
314
'''Solving the Example 1 by Tthe AM '''
315
316
By using the fractional TAM by first formulating the problem as
317
318
{| class="formulaSCP" style="width: 100%; text-align: left;" 
319
|-
320
| 
321
{| style="text-align: left; margin:auto;width: 100%;" 
322
|-
323
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad</math> <math>\Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad </math> <math>w(\vartheta ,\iota )=0. </math>
324
|}
325
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
326
|}
327
328
The first problem that has to be resolved is
329
330
<span id="eq-22"></span>
331
{| class="formulaSCP" style="width: 100%; text-align: left;" 
332
|-
333
| 
334
{| style="text-align: left; margin:auto;width: 100%;" 
335
|-
336
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
337
|}
338
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
339
|}
340
341
The solution of Eq. ([[#eq-22|22]]) may be obtained by using a straightforward procedure, as shown below
342
343
{| class="formulaSCP" style="width: 100%; text-align: left;" 
344
|-
345
| 
346
{| style="text-align: left; margin:auto;width: 100%;" 
347
|-
348
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
349
|}
350
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
351
|}
352
353
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
354
355
{| class="formulaSCP" style="width: 100%; text-align: left;" 
356
|-
357
| 
358
{| style="text-align: left; margin:auto;width: 100%;" 
359
|-
360
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
361
|}
362
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
363
|}
364
365
It is possible to compute the next iteration, and we have
366
367
<span id="eq-25"></span>
368
{| class="formulaSCP" style="width: 100%; text-align: left;" 
369
|-
370
| 
371
{| style="text-align: left; margin:auto;width: 100%;" 
372
|-
373
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
374
|}
375
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
376
|}
377
378
Then, by integrating both sides of Eq. ([[#eq-25|25]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
379
380
{| class="formulaSCP" style="width: 100%; text-align: left;" 
381
|-
382
| 
383
{| style="text-align: left; margin:auto;width: 100%;" 
384
|-
385
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
386
|}
387
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
388
|}
389
390
The next iteration appears as
391
392
{| class="formulaSCP" style="width: 100%; text-align: left;" 
393
|-
394
| 
395
{| style="text-align: left; margin:auto;width: 100%;" 
396
|-
397
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta +\frac{15\tanh ^{3}(\kappa (\vartheta{-\eta}))-45\tanh (\kappa (\vartheta{-\eta}))}{19\sqrt{19}}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{4}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}</math>
398
|-
399
| style="text-align: center;" | <math>     \times \left(19\sqrt{19}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(15\left(152\sqrt{19}\kappa ^{3}-1\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))+76\sqrt{19}\kappa \left(1-16\kappa ^{2}\right)-30\right)\right) </math>
400
|}
401
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
402
|}
403
404
The following iteration is calculable and is provided as
405
406
<span id="eq-28"></span>
407
{| class="formulaSCP" style="width: 100%; text-align: left;" 
408
|-
409
| 
410
{| style="text-align: left; margin:auto;width: 100%;" 
411
|-
412
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
413
|}
414
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
415
|}
416
417
Then, by integrating both sides of Eq. ([[#eq-28|28]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
418
419
{| class="formulaSCP" style="width: 100%; text-align: left;" 
420
|-
421
| 
422
{| style="text-align: left; margin:auto;width: 100%;" 
423
|-
424
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
425
|}
426
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
427
|}
428
429
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-19|19]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
430
431
{| class="formulaSCP" style="width: 100%; text-align: left;" 
432
|-
433
| 
434
{| style="text-align: left; margin:auto;width: 100%;" 
435
|-
436
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{\lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
437
|}
438
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
439
|}
440
441
Here are some details on the exact solution to which the preceding approximate solution leads [30],
442
443
<span id="eq-31"></span>
444
{| class="formulaSCP" style="width: 100%; text-align: left;" 
445
|-
446
| 
447
{| style="text-align: left; margin:auto;width: 100%;" 
448
|-
449
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\zeta}\iota{-\eta})]-45\tanh[\kappa(\vartheta-\zeta\iota-\eta)] </math>
450
|}
451
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
452
|}
453
454
'''Solving the Example 1 by the DM'''
455
456
Eq. ([[#eq-19|19]]) may be simplified by applying NT to it
457
458
{| class="formulaSCP" style="width: 100%; text-align: left;" 
459
|-
460
| 
461
{| style="text-align: left; margin:auto;width: 100%;" 
462
|-
463
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
464
|}
465
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
466
|}
467
468
The definition of the non-linear operator is
469
470
<span id="eq-33"></span>
471
{| class="formulaSCP" style="width: 100%; text-align: left;" 
472
|-
473
| 
474
{| style="text-align: left; margin:auto;width: 100%;" 
475
|-
476
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
477
|}
478
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
479
|}
480
481
When Eq. ([[#eq-33|33]]) is made simpler, we obtain
482
483
<span id="eq-34"></span>
484
{| class="formulaSCP" style="width: 100%; text-align: left;" 
485
|-
486
| 
487
{| style="text-align: left; margin:auto;width: 100%;" 
488
|-
489
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
490
|}
491
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
492
|}
493
494
Eq. ([[#eq-34|34]]) is transformed by inverse NT to give us
495
496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
497
|-
498
| 
499
{| style="text-align: left; margin:auto;width: 100%;" 
500
|-
501
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
502
|}
503
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
504
|}
505
506
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
507
508
{| class="formulaSCP" style="width: 100%; text-align: left;" 
509
|-
510
| 
511
{| style="text-align: left; margin:auto;width: 100%;" 
512
|-
513
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
514
|}
515
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
516
|}
517
518
Using the NDM procedure, we get
519
520
{| class="formulaSCP" style="width: 100%; text-align: left;" 
521
|-
522
| 
523
{| style="text-align: left; margin:auto;width: 100%;" 
524
|-
525
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)], </math>
526
|}
527
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
528
|}
529
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;width: 100%;" 
534
|-
535
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  -\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{7}(\kappa (\vartheta{-\eta}))}{27436\sqrt{19}\Gamma (\sigma{+1)}}\biggl(\left(\left(11552\kappa ^{3}-722\kappa{+15}\sqrt{19}\right)\cosh (2\kappa (\vartheta{-\eta}))-31768\kappa ^{3}-722\kappa{+30}\sqrt{19}\right)</math>
536
|-
537
| style="text-align: center;" | <math>     \times{4}\sinh (\kappa (\vartheta{-\eta}))-1083\zeta \cosh (\kappa (\vartheta{-\eta}))-361\zeta \cosh (3\kappa (\vartheta{-\eta}))\biggr), </math>
538
|}
539
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
540
|}
541
542
{| class="formulaSCP" style="width: 100%; text-align: left;" 
543
|-
544
| 
545
{| style="text-align: left; margin:auto;width: 100%;" 
546
|-
547
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{45\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{11}(\kappa (\vartheta{-\eta}))}{39617584\Gamma (2\sigma{+1)}}\Bigl\{1444\zeta \left(4712\sqrt{19}\kappa ^{3}-152\sqrt{19}\kappa{+45}\right)\cosh (3\kappa (\vartheta{-\eta}))</math>
548
|-
549
| style="text-align: center;" | <math>     -21660\zeta \left(1216\sqrt{19}\kappa ^{3}+38\sqrt{19}\kappa{-27}\right)\cosh (\kappa (\vartheta{-\eta}))-108300\zeta \cosh (5\kappa (\vartheta{-\eta}))</math>
550
|-
551
| style="text-align: center;" | <math>     +8121056\sqrt{19}\zeta \kappa ^{3}\cosh (5\kappa (\vartheta{-\eta}))+109744\sqrt{19}\zeta \kappa \cosh (5\kappa (\vartheta{-\eta}))-21660\zeta \cosh (7\kappa (\vartheta{-\eta}))</math>
552
|-
553
| style="text-align: center;" | <math>     -877952\sqrt{19}\zeta \kappa ^{3}\cosh (7\kappa (\vartheta{-\eta}))++54872\sqrt{19}\zeta \kappa \cosh (7\kappa (\vartheta{-\eta}))-53100\sqrt{19}\sinh (\kappa (\vartheta{-\eta}))</math>
554
|-
555
| style="text-align: center;" | <math>     +469242240\kappa ^{3}\sinh (\kappa (\vartheta{-\eta}))-1097440\sqrt{19}\kappa ^{2}\sinh (\kappa (\vartheta{-\eta}))+1992720\kappa \sinh (\kappa (\vartheta{-\eta}))</math>
556
|-
557
| style="text-align: center;" | <math>     -48348816640\sqrt{19}\kappa ^{6}\sinh (\kappa (\vartheta{-\eta}))-215098240\sqrt{19}\kappa ^{4}\sinh (\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (\kappa (\vartheta{-\eta}))</math>
558
|-
559
| style="text-align: center;" | <math>     -1481544\sqrt{19}\kappa ^{2}\sinh (3\kappa (\vartheta{-\eta}))+1906080\kappa \sinh (3\kappa (\vartheta{-\eta}))-13500\sqrt{19}\sinh (3\kappa (\vartheta{-\eta}))</math>
560
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
561
|-
562
| style="text-align: center;" | <math>     -143545152\sqrt{19}\kappa ^{4}\sinh (3\kappa (\vartheta{-\eta}))-85600320\kappa ^{3}\sinh (3\kappa (\vartheta{-\eta}))+16385218176\sqrt{19}\kappa ^{6}\sinh (3\kappa (\vartheta{-\eta}))</math>
563
|-
564
| style="text-align: center;" | <math>     +61731\sqrt{19}\zeta ^{2}\sinh (3\kappa (\vartheta{-\eta}))-173280\kappa \sinh (5\kappa (\vartheta{-\eta}))+4500\sqrt{19}\sinh (5\kappa (\vartheta{-\eta}))</math>
565
|-
566
| style="text-align: center;" | <math>     +68041280\sqrt{19}\kappa ^{4}\sinh (5\kappa (\vartheta{-\eta}))-12822720\kappa ^{3}\sinh (5\kappa (\vartheta{-\eta}))-274360\sqrt{19}\kappa ^{2}\sinh (5\kappa (\vartheta{-\eta}))</math>
567
|-
568
| style="text-align: center;" | <math>     -1611041920\sqrt{19}\kappa ^{6}\sinh (5\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (5\kappa (\vartheta{-\eta}))+900\sqrt{19}\sinh (7\kappa (\vartheta{-\eta}))</math>
569
|-
570
| style="text-align: center;" | <math>     +1386240\kappa ^{3}\sinh (7\kappa (\vartheta{-\eta}))+109744\sqrt{19}\kappa ^{2}\sinh (7\kappa (\vartheta{-\eta}))-86640\kappa \sinh (7\kappa (\vartheta{-\eta}))</math>
571
|-
572
| style="text-align: center;" | <math>     +28094464\sqrt{19}\kappa ^{6}\sinh (7\kappa (\vartheta{-\eta}))-3511808\sqrt{19}\kappa ^{4}\sinh (7\kappa (\vartheta{-\eta}))+6859\sqrt{19}\zeta ^{2}\sinh (7\kappa (\vartheta{-\eta}))\Bigr\}. </math>
573
|}
574
|}
575
576
And so on. The behavior of a collection of approximate solutions obtained in [[#img-1|Figure 1]] and [[#tab-1|Table 1]].
577
578
<div id='img-1'></div>
579
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;" 
580
|-style="background:white;"
581
|align="center" | 
582
{|style="margin: 0em auto 0.1em auto;width:auto;" 
583
|+
584
|-
585
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-ex.png|252px|Exact solution of ω(ϑ,ι).]]
586
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-NDM.png|252px|Approximate solution of ω(ϑ,ι).]]
587
|-
588
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(a) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>
589
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(b) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{)}</math>
590
|-
591
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-error1.png|252px|Absolute error at ι=1.]]
592
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-ex+app.png|252px|Representation of the approximate solution with the exact solution.]]
593
|-
594
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(c) Absolute error at <math display="inline">\iota=1</math>
595
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(d) Representation of the approximate solution with the exact solution
596
|-
597
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1(w0+w1+w2).png|252px|]]
598
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-alpha.png|256px|]]
599
|-
600
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(e) Comparative graphical simulation in the steady state
601
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(f) The solution of the power series approaches the exact solution
602
|}
603
|-
604
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 1'''. The behavior of a collection of approximate solutions obtained for case (1) at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>
605
|}
606
607
608
<div style="font-size: 75%;text-align:center;">'''Table 1'''. Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-19|19]])  obtained by TAM algorithm and NDM with exact, <br> and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math></div>
609
610
<div id='tab-1'></div>
611
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
612
|-style="text-align:center"
613
!  <math display="inline">\vartheta </math> !!  <math>\iota </math>!!  <math>\omega _{{\scriptscriptstyle TAM}}</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}</math> !!  <math>\omega _{{\scriptscriptstyle HATM}}</math> [30] !!  <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
614
|-style="text-align:center"
615
| rowspan="5" | 1
616
| 0.2 
617
| 2.80424E08 
618
| 2.48734E09 
619
| 2.80432E08 
620
| 2.14599E06 
621
| 2.67151E06
622
|-style="text-align:center"
623
| 0.4 
624
| 4.95147E07 
625
| 8.62662E08 
626
| 4.95160E07 
627
| 2.08915E06 
628
| 5.50393E06
629
|-style="text-align:center"
630
| 0.6 
631
| 2.78302E06 
632
| 7.13064E07 
633
| 2.78309E06 
634
| 2.7345E06 
635
| 7.47041E06
636
|-style="text-align:center"
637
| 0.8 
638
| 9.82780E06 
639
| 3.28572E06 
640
| 9.82802E06 
641
| 1.67288E05 
642
| 5.46055E06
643
|-style="text-align:center"
644
| 1 
645
| 2.69887E05 
646
| 1.10169E05 
647
| 2.69893E05 
648
| 4.67056E05 
649
| 6.17336E06
650
|-style="text-align:center"
651
| rowspan="5" | 2
652
| 0.2 
653
| 1.78570E08 
654
| 1.58980E09 
655
| 1.78573E08 
656
| 1.35933E06 
657
| 1.69305E06
658
|-style="text-align:center"
659
| 0.4 
660
| 3.15442E07 
661
| 5.51676E08 
662
| 3.15448E07 
663
| 1.32002E06 
664
| 3.48849E06
665
|-style="text-align:center"
666
| 0.6 
667
| 1.77395E06 
668
| 4.56307E07 
669
| 1.77397E06 
670
| 1.75053E06 
671
| 4.72985E06
672
|-style="text-align:center"
673
| 0.8 
674
| 6.26867E06 
675
| 2.10428E06 
676
| 6.26876E06 
677
| 1.06596E05 
678
| 3.43118E06
679
|-style="text-align:center"
680
| 1 
681
| 1.72293E05 
682
| 7.06240E06 
683
| 1.72296E05 
684
| 2.97593E05 
685
| 4.02031E06
686
|-style="text-align:center"
687
| rowspan="5" | 3
688
| 0.2 
689
| 1.13535E08 
690
| 1.01377E09 
691
| 1.13536E08 
692
| 8.60648E07 
693
| 1.07236E06
694
|-style="text-align:center"
695
| 0.4 
696
| 2.00629E07 
697
| 3.51942E-08 
698
| 2.00631E07 
699
| 8.34089E07 
700
| 2.20978E06
701
|-style="text-align:center"
702
| 0.6 
703
| 1.12877E06 
704
| 2.91252E07 
705
| 1.12878E06 
706
| 1.11763E06 
707
| 2.99357E06
708
|-style="text-align:center"
709
| 0.8 
710
| 3.99093E06 
711
| 1.34397E06 
712
| 1.99096E06 
713
| 6.78091E06 
714
| 2.15839E06
715
|-style="text-align:center"
716
| 1 
717
| 1.09764E05 
718
| 4.51409E06 
719
| 1.09765E06 
720
| 1.89302E05 
721
| 2.60114E06
722
|-style="text-align:center"
723
| rowspan="5" | 4
724
| 0.2 
725
| 7.20971E09 
726
| 6.45271E-10 
727
| 7.20976E09 
728
| 5.44714E07 
729
| 6.78920E07
730
|-style="text-align:center"
731
| 0.4 
732
| 1.27440E07 
733
| 2.24089E08 
734
| 1.27441E07 
735
| 5.27063E07 
736
| 1.39914E06
737
|-style="text-align:center"
738
| 0.6 
739
| 7.17241E07 
740
| 1.85523E07 
741
| 7.17246E07 
742
| 7.12053E07 
743
| 1.89411E06
744
|-style="text-align:center"
745
| 0.8 
746
| 2.53701E06 
747
| 8.56512E07 
748
| 2.53702E06 
749
| 4.30781E06 
750
| 1.35897E06
751
|-style="text-align:center"
752
| 1 
753
| 6.98135E06 
754
| 2.87858E06 
755
| 6.98138E06 
756
| 1.20257E05 
757
| 1.67448E06
758
|-style="text-align:center"
759
| rowspan="5" | 5
760
| 0.2 
761
| 4.57386E09 
762
| 4.10120E-10 
763
| 4.57388E09 
764
| 3.44656E07 
765
| 4.29680E07
766
|-style="text-align:center"
767
| 0.4 
768
| 8.08663E08 
769
| 1.42464E08 
770
| 8.08667E08 
771
| 3.33064E07 
772
| 8.85550E07
773
|-style="text-align:center"
774
| 0.6 
775
| 4.55248E07 
776
| 1.17984E07 
777
| 4.55249E07 
778
| 4.52901E07 
779
| 1.19818E06
780
|-style="text-align:center"
781
| 0.8 
782
| 1.61084E06 
783
| 5.44920E07 
784
| 3.61084E07 
785
| 2.73379E06 
786
| 8.56270E07
787
|-style="text-align:center"
788
| 1 
789
| 4.43460E06 
790
| 1.83226E06 
791
| 4.43462E07 
792
| 7.63155E06 
793
| 1.07374E06
794
|}
795
796
===4.2 Example 2===
797
798
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
799
800
<span id="eq-40"></span>
801
{| class="formulaSCP" style="width: 100%; text-align: left;" 
802
|-
803
| 
804
{| style="text-align: left; margin:auto;width: 100%;" 
805
|-
806
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
807
|}
808
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
809
|}
810
811
with initial condition
812
813
{| class="formulaSCP" style="width: 100%; text-align: left;" 
814
|-
815
| 
816
{| style="text-align: left; margin:auto;width: 100%;" 
817
|-
818
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
819
|}
820
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
821
|}
822
823
The two iterative approaches that have been suggested will be used to resolve this issue.
824
825
'''Solving the Example 2 by the AM: '''
826
827
By using the fractional TAM by first formulating the problem as
828
829
{| class="formulaSCP" style="width: 100%; text-align: left;" 
830
|-
831
| 
832
{| style="text-align: left; margin:auto;width: 100%;" 
833
|-
834
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad</math><math> \Phi \left(\omega (\vartheta ,\iota )\right)= \omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}</math><math>+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad </math><math> w(\vartheta ,\iota )=0. </math>
835
|}
836
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
837
|}
838
839
The first problem that has to be resolved is
840
841
<span id="eq-43"></span>
842
{| class="formulaSCP" style="width: 100%; text-align: left;" 
843
|-
844
| 
845
{| style="text-align: left; margin:auto;width: 100%;" 
846
|-
847
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
848
|}
849
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
850
|}
851
852
The solution of Eq. ([[#eq-43|43]]) may be obtained by using a straightforward procedure, as shown below
853
854
{| class="formulaSCP" style="width: 100%; text-align: left;" 
855
|-
856
| 
857
{| style="text-align: left; margin:auto;width: 100%;" 
858
|-
859
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
860
|}
861
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
862
|}
863
864
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
865
866
{| class="formulaSCP" style="width: 100%; text-align: left;" 
867
|-
868
| 
869
{| style="text-align: left; margin:auto;width: 100%;" 
870
|-
871
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
872
|}
873
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
874
|}
875
876
It is possible to compute the next iteration, and we have
877
878
<span id="eq-46"></span>
879
{| class="formulaSCP" style="width: 100%; text-align: left;" 
880
|-
881
| 
882
{| style="text-align: left; margin:auto;width: 100%;" 
883
|-
884
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
885
|}
886
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
887
|}
888
889
Then, by integrating both sides of Eq. ([[#eq-46|46]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
890
891
{| class="formulaSCP" style="width: 100%; text-align: left;" 
892
|-
893
| 
894
{| style="text-align: left; margin:auto;width: 100%;" 
895
|-
896
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
897
|}
898
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
899
|}
900
901
The next iteration appears as
902
903
{| class="formulaSCP" style="width: 100%; text-align: left;" 
904
|-
905
| 
906
{| style="text-align: left; margin:auto;width: 100%;" 
907
|-
908
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta{+\gamma}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\biggl(16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
909
|-
910
| style="text-align: center;" | <math>     \times \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\biggr). </math>
911
|}
912
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
913
|}
914
915
The following iteration is calculable and is provided as
916
917
<span id="eq-49"></span>
918
{| class="formulaSCP" style="width: 100%; text-align: left;" 
919
|-
920
| 
921
{| style="text-align: left; margin:auto;width: 100%;" 
922
|-
923
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
924
|}
925
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
926
|}
927
928
Then, by integrating both sides of Eq. ([[#eq-49|49]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
929
930
{| class="formulaSCP" style="width: 100%; text-align: left;" 
931
|-
932
| 
933
{| style="text-align: left; margin:auto;width: 100%;" 
934
|-
935
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
936
|}
937
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
938
|}
939
940
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-40|40]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
941
942
{| class="formulaSCP" style="width: 100%; text-align: left;" 
943
|-
944
| 
945
{| style="text-align: left; margin:auto;width: 100%;" 
946
|-
947
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
948
|}
949
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
950
|}
951
952
Here are some details on the exact solution to which the preceding approximate solution leads [30],
953
954
<span id="eq-52"></span>
955
{| class="formulaSCP" style="width: 100%; text-align: left;" 
956
|-
957
| 
958
{| style="text-align: left; margin:auto;width: 100%;" 
959
|-
960
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\zeta}\iota{-\eta}))-9\tanh (\kappa (\vartheta{-\zeta}\iota{-\eta}))\right). </math>
961
|}
962
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
963
|}
964
965
'''Solving Example 2 by the NDM: '''
966
967
Eq. ([[#eq-40|40]]) may be simplified by applying NT to it
968
969
{| class="formulaSCP" style="width: 100%; text-align: left;" 
970
|-
971
| 
972
{| style="text-align: left; margin:auto;width: 100%;" 
973
|-
974
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
975
|}
976
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
977
|}
978
979
The definition of the non-linear operator is
980
981
<span id="eq-54"></span>
982
{| class="formulaSCP" style="width: 100%; text-align: left;" 
983
|-
984
| 
985
{| style="text-align: left; margin:auto;width: 100%;" 
986
|-
987
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
988
|}
989
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
990
|}
991
992
When Eq. ([[#eq-54|54]]) is made simpler, we obtain
993
994
<span id="eq-55"></span>
995
{| class="formulaSCP" style="width: 100%; text-align: left;" 
996
|-
997
| 
998
{| style="text-align: left; margin:auto;width: 100%;" 
999
|-
1000
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
1001
|}
1002
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
1003
|}
1004
1005
Eq. ([[#eq-55|55]]) is transformed by inverse NT to give us
1006
1007
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1008
|-
1009
| 
1010
{| style="text-align: left; margin:auto;width: 100%;" 
1011
|-
1012
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
1013
|}
1014
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
1015
|}
1016
1017
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
1018
1019
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1020
|-
1021
| 
1022
{| style="text-align: left; margin:auto;width: 100%;" 
1023
|-
1024
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
1025
|}
1026
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
1027
|}
1028
1029
Using the NDM procedure, we get
1030
1031
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1032
|-
1033
| 
1034
{| style="text-align: left; margin:auto;width: 100%;" 
1035
|-
1036
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right), </math>
1037
|}
1038
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
1039
|}
1040
1041
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1042
|-
1043
| 
1044
{| style="text-align: left; margin:auto;width: 100%;" 
1045
|-
1046
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\Bigl\{16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)</math><math>\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
1047
|-
1048
| style="text-align: center;" | <math>     \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\Bigr\}, </math>
1049
|}
1050
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
1051
|}
1052
1053
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1054
|-
1055
| 
1056
{| style="text-align: left; margin:auto;width: 100%;" 
1057
|-
1058
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{90\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{2476099\Gamma (2\sigma{+1)}}\Bigl\{11552\zeta \left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)-8\tanh (\kappa (\vartheta{-\eta}))</math>
1059
|-
1060
| style="text-align: center;" | <math>     \times \left(\sqrt{209}\left(6859\zeta ^{2}+9900\right)+1444\kappa \left(4\kappa ^{2}+1\right)\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-330\right)\right)</math>
1061
|-
1062
| style="text-align: center;" | <math>     -2475\left(5776\left(1596\sqrt{209}\kappa ^{3}-1573\right)\kappa ^{3}+6655\sqrt{209}\right)\tanh (\kappa (\vartheta{-\eta}))\hbox{ sech}^{8}(\kappa (\vartheta{-\eta}))</math>
1063
|-
1064
| style="text-align: center;" | <math>     -15\hbox{ sech}^{6}(\kappa (\vartheta{-\eta}))\Bigl\{-4\left(361\kappa \left(16\kappa ^{2}\left(133\sqrt{209}\kappa \left(662\kappa ^{2}+11\right)-92686\right)-14641\right)+459195\sqrt{209}\right)</math>
1065
|-
1066
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))+27797\zeta \left(152\sqrt{209}\kappa ^{3}-121\right)\Bigr\}+20\hbox{ sech}^{4}(\kappa (\vartheta{-\eta}))\Bigl\{\tanh (\kappa (\vartheta{-\eta}))</math>
1067
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
1068
|-
1069
| style="text-align: center;" | <math>     -3\left(361\kappa \left(\kappa \left(8\kappa \left(19\sqrt{209}\kappa \left(3262\kappa ^{2}+155\right)-72897\right)+209\sqrt{209}\right)-16698\right)+228690\sqrt{209}\right)</math>
1070
|-
1071
| style="text-align: center;" | <math>     +361\zeta \left(19\sqrt{209}\kappa \left(620\kappa ^{2}+11\right)-10527\right)\Bigr\}+2\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))\Bigl\{-1444\zeta \left(76\sqrt{209}\kappa \left(118\kappa ^{2}+7\right)-10065\right)</math>
1072
|-
1073
| style="text-align: center;" | <math>     +11\sqrt{209}\left(6859\zeta ^{2}+96300\right)+5776\kappa \left(8\left(19\sqrt{209}\kappa \left(478\kappa ^{2}+59\right)-13695\right)\kappa ^{2}+266\sqrt{209}\kappa{-8085}\right)</math>
1074
|-
1075
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))\Bigr\}\Bigr\}. </math>
1076
|}
1077
|}
1078
1079
And so on. The behavior of a collection of approximate solutions obtained in [[#img-2|Figure 2]]  and [[#tab-2|Table 2]].
1080
1081
<div id='img-2'></div>
1082
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;" 
1083
|-style="background:white;"
1084
|align="center" | 
1085
{|style="margin: 0em auto 0.1em auto;width:auto;" 
1086
|+
1087
|-
1088
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-ex.png|232px]]
1089
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-app.png|232px]]
1090
|-
1091
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(a) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>
1092
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(b) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{)}</math>
1093
|-
1094
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-error.png|232px]]
1095
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-ex+app.png|232px]]
1096
|-
1097
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(c) Absolute error at <math display="inline">\iota=1</math>
1098
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(d) Representation of the approximate solution with the exact solution
1099
|-
1100
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2(w0+w1+w2).png|232px]]
1101
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-alpha.png|236px]]
1102
|-
1103
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(e) Comparative graphical simulation in the steady state
1104
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(f) The solution of the power series approaches the exact solution
1105
|}
1106
|-
1107
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 2'''. The behavior of a collection of approximate solutions obtained for case (2) at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>
1108
|}
1109
1110
1111
<div class="center" style="font-size: 75%;">'''Table 2'''. Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-40|40]]) obtained by TAM algorithm and NDM with exact,<br> and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math></div>
1112
1113
<div id='tab-2'></div>
1114
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
1115
|-style="text-align:center"
1116
! <math display="inline">\vartheta </math>  !!  <math>\iota </math> !!  <math>\omega _{{\scriptscriptstyle TAM}}</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}</math> !!  <math>\omega _{{\scriptscriptstyle HATM}}</math> [30] !!  <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
1117
|-style="text-align:center"
1118
| rowspan="5" | 1
1119
| 0.2 
1120
| 6.63085E09 
1121
| 6.63085E09 
1122
| 2.80432E08 
1123
| 1.96076E08 
1124
| 1.96076E08
1125
|-style="text-align:center"
1126
| 0.4 
1127
| 6.64967E08 
1128
| 6.64967E08 
1129
| 4.95160E07 
1130
| 1.38124E08 
1131
| 1.38124E08
1132
|-style="text-align:center"
1133
| 0.6 
1134
| 2.89030E07 
1135
| 2.89030E07 
1136
| 2.78309E06 
1137
| 2.11347E07 
1138
| 2.11347E07
1139
|-style="text-align:center"
1140
| 0.8 
1141
| 9.08435E07 
1142
| 9.08435E07 
1143
| 9.82802E06 
1144
| 8.09626E07 
1145
| 8.09626E07
1146
|-style="text-align:center"
1147
| 1 
1148
| 2.42595E06 
1149
| 2.42595E06 
1150
| 2.69893E05 
1151
| 2.31168E06 
1152
| 2.31168E06
1153
|-style="text-align:center"
1154
| rowspan="5" | 2
1155
| 0.2 
1156
| 3.09828E09 
1157
| 3.09828E09 
1158
| 1.78573E08 
1159
| 9.16171E09 
1160
| 9.16170E09
1161
|-style="text-align:center"
1162
| 0.4 
1163
| 3.10707E08 
1164
| 3.10708E08 
1165
| 3.15448E07 
1166
| 6.45387E09 
1167
| 6.45387E09
1168
|-style="text-align:center"
1169
| 0.6 
1170
| 1.35050E07 
1171
| 1.35050E07 
1172
| 1.77397E06 
1173
| 9.87523E08 
1174
| 9.87523E08
1175
|-style="text-align:center"
1176
| 0.8 
1177
| 4.24469E07 
1178
| 4.24469E07 
1179
| 6.26876E06 
1180
| 3.78300E07 
1181
| 3.78300E07
1182
|-style="text-align:center"
1183
| 1 
1184
| 1.13353E06 
1185
| 1.13353E06 
1186
| 1.72296E05 
1187
| 1.08014E06 
1188
| 1.08014E06
1189
|-style="text-align:center"
1190
| rowspan="5" | 3
1191
| 0.2 
1192
| 1.44768E09 
1193
| 1.44768E09 
1194
| 1.13536E08 
1195
| 4.28083E09 
1196
| 4.28083E09
1197
|-style="text-align:center"
1198
| 0.4 
1199
| 1.45179E08 
1200
| 1.45179E08 
1201
| 2.00631E07 
1202
| 3.01559E09 
1203
| 3.01559E09
1204
|-style="text-align:center"
1205
| 0.6 
1206
| 6.31024E08 
1207
| 6.31024E08 
1208
| 1.12878E06 
1209
| 4.61423E08 
1210
| 4.61423E08
1211
|-style="text-align:center"
1212
| 0.8 
1213
| 1.98334E07 
1214
| 1.98334E07 
1215
| 1.99096E06 
1216
| 1.76761E07 
1217
| 1.76761E07
1218
|-style="text-align:center"
1219
| 1 
1220
| 5.29645E07 
1221
| 5.29645E07 
1222
| 1.09765E06 
1223
| 5.04697E07 
1224
| 5.04697E07
1225
|-style="text-align:center"
1226
| rowspan="5" | 4
1227
| 0.2 
1228
| 6.76425E10 
1229
| 6.76430E10 
1230
| 7.20976E09 
1231
| 2.00023E09 
1232
| 2.00023E09
1233
|-style="text-align:center"
1234
| 0.4 
1235
| 6.78351E09 
1236
| 6.78351E09 
1237
| 1.27441E07 
1238
| 1.40904E09 
1239
| 1.40904E09
1240
|-style="text-align:center"
1241
| 0.6 
1242
| 2.94847E08 
1243
| 2.94848E08 
1244
| 7.17246E07 
1245
| 2.15601E08 
1246
| 2.15601E08
1247
|-style="text-align:center"
1248
| 0.8 
1249
| 9.26720E08 
1250
| 9.26720E08 
1251
| 2.53702E06 
1252
| 8.25922E08 
1253
| 8.25922E08
1254
|-style="text-align:center"
1255
| 1 
1256
| 2.47478E07 
1257
| 2.47478E07 
1258
| 6.98138E06 
1259
| 2.35821E07 
1260
| 2.35821E07
1261
|-style="text-align:center"
1262
| rowspan="5" | 5
1263
| 0.2 
1264
| 3.16056E10 
1265
| 3.16065E10 
1266
| 4.57388E09 
1267
| 9.34614E10 
1268
| 9.34609E10
1269
|-style="text-align:center"
1270
| 0.4 
1271
| 3.16960E09 
1272
| 3.16961E09 
1273
| 8.08667E08 
1274
| 6.58372E10 
1275
| 6.58377E10
1276
|-style="text-align:center"
1277
| 0.6 
1278
| 1.37768E08 
1279
| 1.37768E08 
1280
| 4.55249E07 
1281
| 1.00740E08 
1282
| 1.00740E08
1283
|-style="text-align:center"
1284
| 0.8 
1285
| 4.33012E08 
1286
| 4.33012E08 
1287
| 3.61084E07 
1288
| 3.85914E08 
1289
| 3.85914E08
1290
|-style="text-align:center"
1291
| 1 
1292
| 1.15635E07 
1293
| 1.15635E07 
1294
| 4.43462E07 
1295
| 1.10188E07 
1296
| 1.10188E07
1297
|}
1298
1299
==5. Numerical results and discussion==
1300
1301
In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\omega _{n}</math> and fractional order <math display="inline">\sigma </math> using two methods: TAM and NDM. In Example 1, [[#img-1|Figure 1]]  (a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). [[#img-1|Figure 1]] (d) shows the <math display="inline">\omega _{n}</math>-curves for the FKS equation at <math display="inline">\iota=0.1</math> and shows their convergence. In addition, in [[#img-1|Figure 1]] (e), we examined the precise solution and TAM for various values of n at <math display="inline">\iota=0.1</math>, and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in [[#img-1|Figure 1]] (f), values less than one increase the convergence between the exact solution and TAM. In [[#img-2|Figure 2]], we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in [[#img-2|Figure 2]] (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\sigma=1,0.9</math> were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.
1302
1303
==6. Conclusion==
1304
1305
In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.
1306
1307
'''Conflict of Interest:''' The author declare that there is no Conflict of Interest. 
1308
1309
==Acknowledgments==
1310
1311
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R522), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
1312
1313
==References==
1314
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
1315
1316
<div id="cite-1"></div>
1317
[1] Miller K.S., Ross B. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore, 1993.
1318
1319
<div id="cite-2"></div>
1320
[2] Podlubny I. Fractional differential equations, mathematics in science and engineering. Academic Press, San Diego, 1999.
1321
1322
<div id="cite-3"></div>
1323
[3] Almuneef A., Hagag A.E. Approximate solution of the fractional differential equation via the natural decomposition method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 42, 1-15, 2023.
1324
1325
<div id="cite-4"></div>
1326
[4] Wang Z., Huang X., Li Y.X., Song X.N. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), 010504, 2013.
1327
1328
<div id="cite-5"></div>
1329
[5] Almuneef A., Hagag, A.E. Analytical solution to fractional differential equation arising in thermodynamics. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 49, 1-16, 2023.
1330
1331
<div id="cite-6"></div>
1332
[6] Hilfer R. (ed.). Applications of fractional calculus in physics. World scientific, Universität Mainz & Universität Stuttgart, Germany, pp. 472, 2000. . https://api.semanticscholar.org/CorpusID:117406670.
1333
1334
<div id="cite-7"></div>
1335
[7] Alqahtani Z.,  Hagag A.E. A new semi-analytical solution of compound KdV-Burgers equation of fractional order. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 38, 1-16, 2023.
1336
1337
<div id="cite-8"></div>
1338
[8] Alqahtani, Z. and Hagag, A.E. A fractional numerical study on a plant disease model with replanting and preventive treatment. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(3), 27, 1-21, 2023.
1339
1340
<div id="cite-9"></div>
1341
[9] Li C., Chen G.,  Zhao S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1):65-68, 2004.
1342
1343
<div id="cite-10"></div>
1344
[10] Ellahi R., Alamri S.Z., Basit A., Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4):476-482, 2018.
1345
1346
<div id="cite-11"></div>
1347
[11] Rademacher J.D., Wittenberg R.W. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation. J. Comput. Nonlinear Dynam., 1(4):336-347, 2006.
1348
1349
<div id="cite-12"></div>
1350
[12] Zeeshan A., Hussain F., Ellahi R., Vafai K. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, 110898, 2019.
1351
1352
<div id="cite-13"></div>
1353
[13] Khan A.A., Bukhari S.R., Marin, M., Ellahi R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080, 2019.
1354
1355
<div id="cite-14"></div>
1356
[14] Prakash J., Tripathi D., Tiwari A.K., Sait S.M., Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7):868, 2019.
1357
1358
<div id="cite-15"></div>
1359
[15] Riaz A., Ellahi R., Bhatti M.M., Marin M. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560, 2019.
1360
1361
<div id="cite-16"></div>
1362
[16] Conte R. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations. Lecture Notes in Physics, vol 632, Springer, Berlin, Heidelberg, 2003.
1363
1364
<div id="cite-17"></div>
1365
[17] Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2):356-369, 1976.
1366
1367
<div id="cite-18"></div>
1368
[18] Tadmor E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4):884-893, 1986.
1369
1370
<div id="cite-19"></div>
1371
[19] Sivashinsky G.I. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1):179-199, 1983.
1372
1373
<div id="cite-20"></div>
1374
[20] Hooper A.P., Grimshaw R. Nonlinear instability at the interface between two viscous fluids. The Physics of Fluids, 28(1):37-45, 1985.
1375
1376
<div id="cite-21"></div>
1377
[21] Akrivis G., Smyrlis Y.S. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied Numerical Mathematics, 51(2-3):151-169, 2004.
1378
1379
<div id="cite-22"></div>
1380
[22] Akrivis G.D. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63:1-11, 1992.
1381
1382
<div id="cite-23"></div>
1383
[23] Ersoy O.,  Dag I. The exponential cubic b-Spline collocation method for the Kuramoto-Sivashinsky equation. Filomat, 30(3):853-861, 2016.
1384
1385
<div id="cite-24"></div>
1386
[24] Rezazadeh H., Ziabarya B.P. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3):106- 109, 2016.
1387
1388
<div id="cite-25"></div>
1389
[25] Manaa S.A., Easif F.H., Yousif M.A. Adomian decomposition method for Sslving the Kuramoto-Sivashinsky equation. IOSR Journal of Mathematics, 10:08-12, 2014.
1390
1391
<div id="cite-26"></div>
1392
[26] Kulkarni S., Takale K., Gaikwad S. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3):1078-1084, 2020.
1393
1394
<div id="cite-27"></div>
1395
[27] Okeke J.E., Okoli O.C., Obi T.A., Ujumadu R.N. New exact solution of a class of Kuramoto Sivashinsky (KS) equations using double reduction theory. International Journal of Innovative Science and Research Technology, 7(3):477-487, 2022.
1396
1397
<div id="cite-28"></div>
1398
[28] Kilicman A., Silambarasan R. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10):527, 2018.
1399
1400
<div id="cite-29"></div>
1401
[29] Noor M.A., Mohyud-Din S.T., Waheed A. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29:1-13, 2009.
1402
1403
<div id="cite-30"></div>
1404
[30] Veeresha P., Prakasha D.G. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2):33, 2021.
1405
1406
<div id="cite-31"></div>
1407
[31] Abbasbandy S. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52:35-40, 2008.
1408
1409
<div id="cite-32"></div>
1410
[32] Kurulay M., Secer A., Akinlar M.A. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1):267-271, 2013.
1411
1412
<div id="cite-33"></div>
1413
[33] Shah R., Khan H., Baleanu D., Kumam P., Arif M. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1):402-411, 2020.
1414
1415
<div id="cite-34"></div>
1416
[34] Acan O., Keskin Y. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings, 1648(1):470003, AIP Publishing LLC, 2015.
1417
1418
<div id="cite-35"></div>
1419
[35] Temimi H.,  Ansari A.R. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2):203-210, 2011.
1420
1421
<div id="cite-36"></div>
1422
[36] Al-Hanaya A., Alotaibi M., Shqair M., Hagag A.E. MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12):29440-29452, 2023.
1423
1424
<div id="cite-37"></div>
1425
[37] Rawashdeh M.S. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7):2362-2376, 2017.
1426
1427
<div id="cite-38"></div>
1428
[38] Liouville J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. Journal de l'École Polytechnique, 13(21):1-69, 1832.
1429
1430
<div id="cite-39"></div>
1431
[39] Kilbas A.A., Srivastava H.M., Trujillo J.J. (eds.). Theory and applications of fractional differential equations. Elsevier, 204:1-523, 2006.
1432
1433
<div id="cite-40"></div>
1434
[40] Khan Z.H., Khan W.A. N-transform properties and applications. NUST Journal of Engineering Sciences, 1(1):127-133, 2008.
1435
1436
<div id="cite-41"></div>
1437
[41] Belgacem F.B.M., Silambarasan R. Advances in the natural transform. In AIP Conference Proceedings, 1493(1):106-110, American Institute of Physics, 2012.
1438

Return to Hagag 2023a.

Back to Top