You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Summary==
2
3
Variable weight synthesis method is a safety assessment method which is using the varied weight principle, based on analytic hierarchy process and combining the theory of grey relevancy, it reduce influence that secondary cause is not obvious in assessment process, and make the result more correct and dependable. In the paper, variable weight principle and the assessment method were expounded in detail.
4
5
==Keywords==
6
7
Variable weight synthesis method ; Bridge structure ; Safety assessment
8
9
==Variable weight principle and variable weights method==
10
11
===Variable weight principle===
12
13
In the literature ([[#bib0005|Bai, 2007]]  and [[#bib0025|Liu et al., 2004]] ), variable weight synthesis method is the definition of:
14
* Assume that a m-dimensional vector, <math display="inline">W^0=(W_1^0,W_2^0,\ldots ,W_m^0)</math> , if present <math display="inline">W_j^0\in (0,1)</math>  makes <math display="inline">\sum _{j=1}^mW_J^0=1</math>  correct for arbitrary variables ''j''  ∈ {1, 2, …, ''m'' };                          
15
* Given a ''m''''d''  vector of parts keep weight ''W'' (''X'' )Δ[''W''<sub>1</sub> (''X'' )2''W''<sub>1</sub> (''X'' ), …, ''W''<sub>''m''</sub> (''X'' )], for given mapping: ''W''  : [0, 1]<sup>''m''</sup>  → (0, 1], it makes that:
16
* <math display="inline">\sum _{j=1}^mW_j(X)=1</math>
17
* Assume that ''α''<sub>''j''</sub> , ''β''<sub>''j''</sub>  ∈ [0, 1], and ''α''<sub>''j''</sub>  ≤ ''β''<sub>''j''</sub> , for arbitrary variables ''j''  ∈ {1, 2, …, ''m'' }, present ''W''<sub>''j''</sub>  in regard to ''x''<sub>''j''</sub>  in the internal [0, ''α''<sub>''j''</sub> ] and [''β''<sub>''j''</sub> , 1] respectively decrease and increase progressively.                                      
18
* Assume that the vector ''S'' (''X'' )Δ[''S''<sub>1</sub> (''X'' ), ''S''<sub>2</sub> (''X'' ), …, ''S''<sub>''m''</sub> (''X'' )] is a ''m''''d''  vector of parts variable weight, for the given mapping ''S''  : [0, 1]<sup>''m''</sup>  → (0, + ∞)<sup>''m''</sup> , for arbitrary variables ''j''  ∈ {1, 2, …, ''m'' }, assume ''α''<sub>''j''</sub> , ''β''<sub>''j''</sub>  ∈ [0, 1], and ''α''<sub>''j''</sub>  ≤ ''β''<sub>''j''</sub>  present that:
19
* For arbitrary variables ''j''  ∈ {1, 2, …, ''m  '' } for fixed weights vector <math display="inline">W^0=(W_1^0,W_2^0,\ldots ,W_m^0)</math> , <math display="inline">W_j(X)=((W_j^0S_j(X))/(\sum _{k=1}^mW_k^{(0)}S_k(X)))</math>  in the internal [0, ''α''<sub>''j''</sub> ] and [''β''<sub>''j''</sub> , 1] respectively decrease and increase progressively.                                                  
20
* If 0 ≤ ''x''<sub>''i''</sub>  ≤ ''x''<sub>''k''</sub>  ≤ ''α''<sub>''i''</sub>  ∧ ''α''<sub>''k''</sub> , ''S''<sub>''i''</sub> (''x'' ) ≥ ''S''<sub>''k''</sub> (''x'' ), and ''β''<sub>''i''</sub>  ∨ ''β''<sub>''k''</sub>  ≤ ''x''<sub>''i''</sub>  ≤ ''x''<sub>''k''</sub>  ≤ 1, then
21
22
{| class="formulaSCP" style="width: 100%; text-align: center;" 
23
|-
24
| 
25
{| style="text-align: center; margin:auto;" 
26
|-
27
| <math>\frac{w^0\cdot S(x)}{\sum _{j=1}^mw_j^0S_j(x)}\triangleq \left\{\frac{w_1^0\cdot S_1(x)}{\sum _{j=1}^mw_j^0S_j(x)},\frac{w_2^0\cdot S_2(x)}{\sum _{j=1}^mw_j^0S_j(x)},\cdots ,\frac{w_m^0\cdot S_m(x)}{\sum _{j=1}^mw_j^0S_j(x)}\right\}</math>
28
|}
29
| style="text-align: right;" | ( 1)
30
|}
31
32
be called ''m''''d''  vector of parts variable weight。                                          
33
34
===Amendment of variable weights method===
35
36
In the variable weights method, when synthesis assessment the assessed value of hundred-mark system, it will result data with denominator larger, and produce larger round-off error. For convenience of calculations and considering the required precision, to transform hundred-mark system into percentage of system, and then, by adjusting coefficients in the formulas, getting the synthesis assessed value of hundred-mark system. in addition, for some sequences of inspection data, it is impossible to collect all the data, but it is needed to compare the curve of sequences of inspection data, so in this paper, considering base on the grey theory related principle to offset the malconformation and incomprehensive of data ([[#bib0015|Lan and Shi, 2001]] ). The paper makes the improvement.
37
38
{| class="formulaSCP" style="width: 100%; text-align: center;" 
39
|-
40
| 
41
{| style="text-align: center; margin:auto;" 
42
|-
43
| <math>V=\sum_{j=1}^m100w_j(x_1,\ldots ,x_m,w_1^{(0)},\ldots ,w_m^{(0)})x_j</math>
44
|}
45
| style="text-align: right;" | ( 2)
46
|}
47
48
In formula: ''V  ''  is the assessed value; <math display="inline">w_j^{(0)}</math>  is initial weight value of the ''j  '' th indicators, and <math display="inline">\sum _{j=1}^nw_j^{(0)}=1</math> ; <math display="inline">w_j</math>  is weight value after variable weight; ''x''<sub>''j''</sub>  is the percentage of assessment value of the ''j'' th indicators, and
49
50
<span id='eq0015'></span>
51
{| class="formulaSCP" style="width: 100%; text-align: center;" 
52
|-
53
| 
54
{| style="text-align: center; margin:auto;" 
55
|-
56
| <math>\begin{array}{l}\displaystyle w_j(x_1,\ldots,x_n,w_1^{(0)},\ldots\\\displaystyle w_n^{(0)})=\frac{w_j^{(0)}((\partial B(x_1,\ldots,x_n))/\partial x_j)}{\sum _{k=1}^nw_k^{(0)}((\partial B(x_1,\ldots,x_n))/\partial x_k)}\end{array}</math>
57
|}
58
| style="text-align: right;" | ( 3)
59
|}
60
61
In formula, ''B'' (''x''<sub>1</sub> , …, ''x''<sub>''n''</sub> ) is balanced function, according to experience of engineering practice, the balanced function is:
62
63
<span id='eq0020'></span>
64
{| class="formulaSCP" style="width: 100%; text-align: center;" 
65
|-
66
| 
67
{| style="text-align: center; margin:auto;" 
68
|-
69
| <math>B(x_1,\ldots ,x_n)=\sum_{j=1}^nx_j^{\alpha }\mbox{ }(0<\alpha \leq 1)</math>
70
|}
71
| style="text-align: right;" | ( 4)
72
|}
73
74
simultaneous Eqs.  [[#eq0015|(3)]]  and [[#eq0020|(4)]] , it can get:
75
76
<span id='eq0025'></span>
77
{| class="formulaSCP" style="width: 100%; text-align: center;" 
78
|-
79
| 
80
{| style="text-align: center; margin:auto;" 
81
|-
82
| <math>w_j(x_1,\ldots ,x_n,w_1^{(0)},\ldots ,w_n^{(0)})=\frac{w_j^{(0)}x_j^{\alpha -1}}{\sum _{k=1}^nw_k^{(0)}x_k^{\alpha -1}}</math>
83
|}
84
| style="text-align: right;" | ( 5)
85
|}
86
87
so
88
89
{| class="formulaSCP" style="width: 100%; text-align: center;" 
90
|-
91
| 
92
{| style="text-align: center; margin:auto;" 
93
|-
94
| <math>V=\sum_{j=1}^m\frac{100w_j^{(0)}x_j^{\alpha }}{\sum _{k=1}^nw_k^{(0)}x_k^{\alpha -1}}</math>
95
|}
96
| style="text-align: right;" | ( 6)
97
|}
98
99
''α'' : balance coefficient, according to experience of engineering practice, ''α''  = 0.2, it can meet most of engineering situation.      
100
101
The inspection data of bridge can be divided into three categories: the first kind is non-numeric data with describing the state of bridge components only or dividing grade simply; the second is a single numerical; and the third is a data series. It is needed that applies dimensionless method to the third kind data, compare and analyse the two curves of data series. Introduce grey correlativity analysis and calculate non-uniform variation coefficient to get the assessment result, the formula as follows:
102
103
<span id='eq0035'></span>
104
{| class="formulaSCP" style="width: 100%; text-align: center;" 
105
|-
106
| 
107
{| style="text-align: center; margin:auto;" 
108
|-
109
| <math>V=\sum_{j=1}^m\frac{100w_j^{(0)}x_j^{\alpha }}{\sum _{k=1}^nw_k^{(0)}x_k^{\alpha -1}}r(x_0,x_i)</math>
110
|}
111
| style="text-align: right;" | ( 7)
112
|}
113
114
And ''r'' (''x''<sub>0</sub> , ''x''<sub>''i''</sub> ) calculate according to the formula as below  [[#eq0025|(5)]]  and [[#eq0040|(8)]] :
115
116
<span id='eq0040'></span>
117
{| class="formulaSCP" style="width: 100%; text-align: center;" 
118
|-
119
| 
120
{| style="text-align: center; margin:auto;" 
121
|-
122
| <math>\begin{array}{l}\displaystyle r(X_0\\\displaystyle X_i)=\frac{1}{n-1}\sum _{k=1}^{n-1}\left[1+\left|\frac{a^{(1)}(x_0(k+1))}{x_0(k+1)}-\right.\right.\\\left.\left.\displaystyle -\frac{a^{(1)}(x_i(k+1))}{x_i(k+1)}\right|\right]^{-1}\end{array}</math>
123
|}
124
| style="text-align: right;" | ( 8)
125
|}
126
127
==Advantage of variable weight synthesis method==
128
129
Compared with constant weight synthesis method, variable weight synthesis method can make the influence of components with damage badly more prominent. In structure, maybe individual component damage can be lead to the bridge operational be limited, even impact to the safety of the bridge ([[#bib0010|Gao and Wang, 2000]] , [[#bib0015|Lan and Shi, 2001]] , [[#bib0030|Wu and Xiang, 1995]] , [[#bib0035|Xiang and Wu, 2005]]  and [[#bib0040|Zhang and Feng, 2001]] ). Comparison with the result of constant weight synthesis method and variable weight synthesis method is given.      
130
131
Using the data in [[#tbl0005|Table 2.1]]  and [[#tbl0010|Table 2.2]] , assessment of the health of bridge with variable weight synthesis method and constant weight synthesis method is shown.
132
* Constant weight synthesis method:
133
134
{| class="formulaSCP" style="width: 100%; text-align: center;" 
135
|-
136
| 
137
{| style="text-align: center; margin:auto;" 
138
|-
139
| <math>\begin{array}{l}\displaystyle BCI_2=80\times 0.31+80\times 0.13+75\times 0.14+80\times 0.37+5\times 0.04=\\\displaystyle =75.51>6\end{array}</math>
140
|}
141
| style="text-align: right;" | 
142
|}
143
144
The conclusion is “qualified”;
145
* Variable weight synthesis method (''α''  = 0.2):
146
147
{| class="formulaSCP" style="width: 100%; text-align: center;" 
148
|-
149
| 
150
{| style="text-align: center; margin:auto;" 
151
|-
152
| <math>\begin{array}{l}\displaystyle \sum _{k=1}^mw_k^{(0)}x^{\alpha -1}=\sum _{k=1}^9w_k^{(0)}x_k^{-0.8}=\\\displaystyle =0.31\times 0.80^{-0.8}+0.13\times 0.80^{-0.8}+0.14\times 0.75^{-0.8}+\\\displaystyle +0.37\times 0.80^{-0.8}+0.04\times 0.05^{-0.8}=1.5840\end{array}</math>
153
|}
154
| style="text-align: right;" | 
155
|}
156
157
score ''V''<sub>2</sub> :
158
159
{| class="formulaSCP" style="width: 100%; text-align: center;" 
160
|-
161
| 
162
{| style="text-align: center; margin:auto;" 
163
|-
164
| <math>\begin{array}{l}\displaystyle V_2=\frac{100w_j^{(0)}x_j^{\alpha }}{\sum _{k=1}^nw_j^{(0)}x_k^{\alpha -1}}=\frac{100}{1.5840}(0.2965+0.1243+0.1322+\\\displaystyle +0.3539+0.0220)=58.64\end{array}</math>
165
|}
166
| style="text-align: right;" | 
167
|}
168
169
The conclusion is “disqualified”.
170
171
<span id='tbl0005'></span>
172
173
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
174
|+
175
176
Table 2.1.
177
178
Assess table of a bridge.
179
180
|-
181
182
! Indicator
183
! Weight
184
! Technical status
185
! Explain
186
|-
187
188
! Pier and abutment
189
| 0.31
190
| 80
191
| Better
192
|-
193
194
! Girder
195
| 0.13
196
| 80
197
| Better
198
|-
199
200
! Pylon
201
| 0.14
202
| 75
203
| Normal
204
|-
205
206
! Stay cable
207
| 0.37
208
| 80
209
| Better
210
|-
211
212
! Subsidiary facilities
213
| 0.04
214
| 5
215
| Failure badly
216
|}
217
218
<span id='tbl0010'></span>
219
220
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
221
|+
222
223
Table 2.2.
224
225
Consultable table of equal coefficient.
226
227
|-
228
229
! Equal coefficient
230
! ''α''  = 0                                                    
231
! ''α''  = 0.2                                                    
232
! ''α''  = 0.5                                                    
233
! ''α''  = 0.8                                                    
234
! ''α''  = 1.0                                                    
235
|-
236
237
! Score of girder
238
| 49.52
239
| 58.64
240
| 68.59
241
| 74.19
242
| 75.51
243
|}
244
245
Explain: The value of ''α''  reflects tolerance of local damage, with the increase of ''α'' , tolerance increase.      
246
247
By the above examples, it can be got that when the subsidiary facilities damage badly, the result of constant weight synthesis method is “qualified” while variable weight synthesis method is “disqualified”. It is show that variable weight synthesis method can well reflect the local defect and considering the malconformation into assessment. It is more tallies with the actual situation.
248
249
==Application example of method==
250
251
The inspection data of line shape control about abridge is in [[#tbl0015|Table 3.1]] .
252
253
<span id='tbl0015'></span>
254
255
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
256
|+
257
258
Table 3.1.
259
260
Level evaluation of reference point.
261
262
|-
263
264
! Coordinate (''m'' )                                                    
265
! Designed elevation (''X''<sub>0</sub> )                                                    
266
! Measured elevation (''X''<sub>''i''</sub> )                                                    
267
! Error (''m'' )                                                    
268
! Assessed value (''D''<sub>''i''</sub> )                                                    
269
|-
270
271
| 0
272
| 86.550
273
| 86.538
274
| 0.012
275
| 90
276
|-
277
278
| 20
279
| 86.844
280
| 86.830
281
| 0.014
282
| 90
283
|-
284
285
| 40
286
| 87.079
287
| 87.056
288
| 0.023
289
| 80
290
|-
291
292
| 60
293
| 87.247
294
| 87.235
295
| 0.012
296
| 90
297
|-
298
299
| 80
300
| 87.432
301
| 87.419
302
| 0.013
303
| 90
304
|-
305
306
| 100
307
| 87.534
308
| 87.520
309
| 0.014
310
| 90
311
|-
312
313
| 120
314
| 87.541
315
| 87.517
316
| 0.024
317
| 80
318
|-
319
320
| 140
321
| 87.531
322
| 87.508
323
| 0.023
324
| 80
325
|-
326
327
| 160
328
| 87.371
329
| 87.357
330
| 0.014
331
| 90
332
|-
333
334
| 180
335
| 87.168
336
| 87.153
337
| 0.015
338
| 90
339
|-
340
341
| 200
342
| 86.993
343
| 86.977
344
| 0.016
345
| 90
346
|-
347
348
| 220
349
| 86.774
350
| 86.752
351
| 0.022
352
| 80
353
|-
354
355
| 240
356
| 86.537
357
| 86.526
358
| 0.011
359
| 90
360
|}
361
362
According to formula [[#eq0025|(5)]] , calculate variation of weight shown in [[#fig0005|Fig. 3.1]] .
363
364
<span id='fig0005'></span>
365
366
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
367
|-
368
|
369
370
371
[[Image:draft_Content_200301432-1-s2.0-S2213020915000786-gr1.jpg|center|362px|Variational weight in observation point of girder line.]]
372
373
374
|-
375
| <span style="text-align: center; font-size: 75%;">
376
377
Figure 3.1.
378
379
Variational weight in observation point of girder line.
380
381
</span>
382
|}
383
384
According to formula [[#eq0035|(7)]]  and [[#eq0040|(8)]]  calculate as:
385
386
{| class="formulaSCP" style="width: 100%; text-align: center;" 
387
|-
388
| 
389
{| style="text-align: center; margin:auto;" 
390
|-
391
| <math>V=\sum_{j=1}^m\frac{100w_j^{(0)}x_j^{\alpha }}{\sum _{k=1}^nw_k^{(0)}x_k^{\alpha -1}}r(x_0,x_i)=84.14</math>
392
|}
393
| style="text-align: right;" | 
394
|}
395
396
''x''<sub>''k''</sub>  = ''D''<sub>''i''</sub> /100, ''D''<sub>''i''</sub> : assessed value. <math display="inline">w^{(0)}=1/n</math>  (''n''  = 13) initial weight value, see [[#tbl0015|Table 3.1]] .
397
398
{| class="formulaSCP" style="width: 100%; text-align: center;" 
399
|-
400
| 
401
{| style="text-align: center; margin:auto;" 
402
|-
403
| <math>\begin{array}{l}\displaystyle r(X_0\\\displaystyle X_i)=\frac{1}{n-1}\sum _{k=1}^{n-1}\left[1+\left|\frac{a^{(1)}(x_0(k+1))}{x_0(k+1)}-\right.\right.\\\left.\left.\displaystyle -\frac{a^{(1)}(x_i(k+1))}{x_i(k+1)}\right|\right]^{-1}=0.968\end{array}</math>
404
|}
405
| style="text-align: right;" | 
406
|}
407
* ''X''<sub>0</sub>  = [''X''<sub>0</sub> (1), ''X''<sub>0</sub> (2), …, ''X''<sub>0</sub> (13)] designed elevation;                          
408
* ''X''<sub>''i''</sub>  = [''X''<sub>''i''</sub> (1), ''X''<sub>''i''</sub> (2), …, ''X''<sub>''i''</sub> (13)] measured elevation.                  
409
410
Assessment score of girder alignment is 84.14, contrast [[#tbl0020|Table 3.2]] , the bridge can be classified grade 1.
411
412
<span id='tbl0020'></span>
413
414
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
415
|+
416
417
Table 3.2.
418
419
The reference standard of bridge technique condition evaluation.
420
421
|-
422
423
! Score
424
! Grade
425
! Explain
426
|-
427
428
! 80 < ''V''  ≤ 100                                                    
429
| Grade 1
430
| Well, only daily maintenance
431
|-
432
433
! 60 < ''V''  ≤ 80                                                    
434
| Grade 2
435
| Normal, daily maintenance and minor repair
436
|-
437
438
! 40 < ''V''  ≤ 60                                                    
439
| Grade 3
440
| Weak, repair and load test
441
|-
442
443
! 20 < ''V''  ≤ 40                                                    
444
| Grade 4
445
| Bad, Stop running and strengthen
446
|-
447
448
! 0 < ''V''  ≤ 20                                                    
449
| Grade 5
450
| Danger, considering dismantle and rebuild
451
|}
452
453
''Note'' : The evaluation standard is made according to “Evaluation procedure for bearing capacity of highway bridge”.
454
455
==Conclusion and prospect==
456
457
In the safety process of assessment, the method, by using the variable weight principle to assess actual state of the assessment indexes, extrude the influence of the parts of damaged badly, especially the effect of secondary cause. And on this basis, apply method of grey relational to calculate the correlation degree of sequence data, it make up malconformation and incomplete collection of the test data.
458
459
The article explains the variable weight synthesis method, and applies the method into the process of bridge assessment. Though it has the rationality of the method, but it still exist some problem. First, although the assessment applies new method, but most of the index still reference codes and specifications and previous research results, it needs to do a more in-depth discussion. Second, the initial weight value used in the paper, it is still the average weight which has certain blindness, it needs to do a more in-depth discussion, too.
460
461
==Conflict of interest==
462
463
The author declares that there is no conflict of interest.
464
465
==References==
466
467
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='bib0005'></span>
468
[[#bib0005|Bai, 2007]] Y. Bai; The application of variable weight synthesis method in estimate of real estate investment environment; J. Adult Educ. Coll. Hebei Univ., 9 (3) (2007)</li>
469
<li><span id='bib0010'></span>
470
[[#bib0010|Gao and Wang, 2000]] H. Gao, J. Wang; A review of research and application of detective and evaluation technology for bridges; World Inf. Earthq. Eng., 16 (2) (2000)</li>
471
<li><span id='bib0015'></span>
472
[[#bib0015|Lan and Shi, 2001]] H. Lan, J. Shi; Degree of grey incidence and variable weight synthesizing applied in bridge assessment; J. Tongji Univ., 29 (l) (2001)</li>
473
<li><span id='bib0025'></span>
474
[[#bib0025|Liu et al., 2004]] S. Liu, Y. Dang, Z. Fang; The Grey System Theory and Application; Science publishing house, Beijing (2004)</li>
475
<li><span id='bib0030'></span>
476
[[#bib0030|Wu and Xiang, 1995]] H. Wu, Y. Xiang; Assessment the tension and the linetype state cable 2 stayed bridge based on variable weight synthesis; China Rail. Sci., 4 (1995), p. 16</li>
477
<li><span id='bib0035'></span>
478
[[#bib0035|Xiang and Wu, 2005]] Y. Xiang, H. Wu; Research on condition assessment system of long-span prestressed concrete cable-stayed bridge; J. China Foreign Highw., 25 (5) (2005)</li>
479
<li><span id='bib0040'></span>
480
[[#bib0040|Zhang and Feng, 2001]] Y. Zhang, Z. Feng; To evaluate the bridge safety by AHP; J. Xi’an Highway Univ., 21 (3) (2001)</li>
481
</ol>
482

Return to Cong 2015a.

Back to Top

Document information

Published on 05/10/16

Licence: Other

Document Score

0

Views 7
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?