You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
In this study, a simple and high accurate series-based method called Differential Transformation Method (DTM) is used for solving the coupled nonlinear differential equations in fluids mechanic problems. The concept of the DTM is briefly introduced, and its application on two different cases, natural convection of a non-Newtonian nanofluid between two vertical plates and Newtonian nanofluid flow between two horizontal plates, has been studied. DTM results are compared with those obtained by a numerical solution (Fourth-order Runge–Kutta) to show the accuracy of the proposed method. Results reveal that DTM is very effective and convenient which can achieve more reliable results compared to other analytical methods in solving some engineering and sciences problems.
4
5
==Keywords==
6
7
Coupled nonlinear differential equations; Differential Transformation Method; Natural convection; Newtonian and non-Newtonian nanofluids
8
9
==1. Introduction==
10
11
The nonlinear problems and phenomena can be modeled by ordinary or partial nonlinear differential equations to find their physical behavior in certain cases. Most of these described physical and mechanical problems have a set of coupled nonlinear differential equations. For example, heat transfer by natural convection which commonly occurs in many physical and engineering applications such as geothermal systems, chemical catalytic reactors, and heat exchangers has a system of coupled nonlinear differential equations. One of the simple and reliable methods for solving the system of coupled nonlinear differential equations is analytical solution which recently is widely used in solving many problems [[#b0005|[1]]], [[#b0010|[2]]], [[#b0015|[3]]], [[#b0020|[4]]], [[#b0025|[5]]], [[#b0030|[6]]], [[#b0035|[7]]] and [[#b0040|[8]]]. Ziabakhsh and Domairry [[#b0045|[9]]] have studied the natural convection of a non-Newtonian fluid between two infinite parallel vertical flat plates by Homotopy Analysis Method (HAM) which is a general form of the HPM.
12
13
An analytical method called Differential Transformation Method (DTM) has also been introduced for nonlinear problem solution. DTM is an analytical method based on Taylor series. It constructs an analytical solution in the form of a polynomial. Actually, DTM is different from the traditional high order Taylor series method, which requires symbolic calculation of the necessary derivatives of the data functions. This method was firstly applied in the engineering field by Zhou [[#b0050|[10]]] and its abilities attracted many authors to use this method for solving the nonlinear equations. DTM or improved shape forms of it (Ms-DTM and Hybrid-DTM) can solve any coupled nonlinear equations set. They can also be used for three dimensional problems. Ghafoori et al. [[#b0055|[11]]] solved a nonlinear oscillation equation by DTM and they revealed that DTM results are more accurate than HPM and VIM (Variation Iteration Method). Yahyazadeh et al. [[#b0060|[12]]] evaluated the natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field using DTM. Also, Biazar and Eslami [[#b0065|[13]]] considered DTM to solve the quadratic Riccati differential equation and the derived results by DTM were compared with the results of HAM and ADM (adomian decomposition method). They showed that DTM results are more effective and favorable than HAM and ADM results. Gokdogan et al. [[#b0070|[14]]] acquired an approximate analytical solution of the chaotic Genesio system by a modified DTM. Ayaz [[#b0075|[15]]] studied two-dimensional differential transform method for solving an initial value problem in partial differential equations (PDEs). In another application of DTM, the natural frequencies and critical flow velocities of pipes conveying fluid with several typical boundary conditions were obtained by Ni et al. [[#b0080|[16]]]. Although many analytical methods have been presented in the literature, DTM is expected to find more valuable applications due to the following advantages:
14
* Unlike perturbation techniques, DTM is independent of any small parameter such as ''p'' in HPM. DTM can thus be applied no matter if governing equations and boundary/initial conditions of a given nonlinear problem contain small or large quantities or not.
15
* DTM does not need to calculate auxiliary parameter <math display="inline">{\hslash }_1</math> through ''h''-curves against Homotopy Analysis method (HAM).
16
* DTM does not need to determine auxiliary function, auxiliary parameter or guess suitable initial values. Unlike HAM, it can solve the equations directly.
17
* DTM provides us with great freedom to express solutions of a given nonlinear problem by means of Pade approximant and Ms-DTM.
18
19
This paper aimed to apply DTM for system of coupled nonlinear equations and testify the reliability of DTM by comparing its results with HPM. For showing the accuracy of DTM in described problems, two cases of problems, natural convection of a non-Newtonian fluid between two vertical plates and Newtonian fluid flow analysis between two horizontal plates, were solved. As an important result, it was found that the DTM results are more accurate than those obtained by HPM in some areas. After this verification, the effects of some physical parameters were analyzed to show the efficiency of DTM for this type of the problems.
20
21
==2. Problems description==
22
23
The study of the fluid flow between parallel plates has many applications in industries which motivated the researchers to investigate. Ziabakhsh and Domairry [[#b0045|[9]]] investigated the natural convection of non-Newtonian fluid between vertical parallel plates using HAM, and based on their work, Hatami and Ganji [[#b0090|[18]]] studied the effect of sodium alginate (SA) non-Newtonian nanofluid between parallel plates. Also, Rajagopal and Na [[#b0095|[19]]] presented a numerical solution for the natural convection of non-Newtonian fluids between vertical plates. In the following section, two cases of problems in fluid flow between parallel plates with coupled nonlinear differential equations will be introduced. It is aimed to investigate the efficiency of DTM in comparison with numerical solution.
24
25
===2.1. Case 1===
26
27
In first case the heat transfer analysis in the unsteady two-dimensional squeezing nanofluid flow between the infinite parallel plates ([[#f0005|Fig. 1]], left). The two plates are placed at <math display="inline">z=\pm l{\left(1-\alpha t\right)}^{1/2}=\pm h(t)</math>. For <math display="inline">\alpha >0</math>, the two plates are squeezed until they touch where <math display="inline">t=1/\alpha </math> and for <math display="inline">\alpha <0</math> the two plates are separated. The viscous dissipation effect, the generation of heat due to friction caused by shear in the flow, is retained. This effect is quite important in the case when the fluid is largely viscous or flowing at a high speed. This behavior occurs at high Eckert number (≫1). The symmetric nature of the flow is adopted. The fluid is a water based nanofluid containing Cu (copper) nanoparticles. The nanofluid is a two component mixture with the following assumptions: incompressible; no-chemical reaction; negligible viscous dissipation; negligible radiative heat transfer; nano-solid-particles and the base fluid are in thermal equilibrium and no slip occurs between them. The governing equations for momentum and energy in unsteady two dimensional flow of a nanofluid are as follows [[#b0085|[17]]]:
28
29
{| class="formulaSCP" style="width: 100%; text-align: center;" 
30
|-
31
| 
32
{| style="text-align: center; margin:auto;" 
33
|-
34
| <math>\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=</math><math>0\mbox{,}</math>
35
|}
36
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
37
|}
38
39
<span id='e0010'></span>
40
{| class="formulaSCP" style="width: 100%; text-align: center;" 
41
|-
42
| 
43
{| style="text-align: center; margin:auto;" 
44
|-
45
| <math>{\rho }_{nf}\left(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial v}+\right. </math><math>\left. v\frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+</math><math>{\mu }_{nf}\left(\frac{{\partial }^2u}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2u}{\partial y^2}\right)\mbox{,}</math>
46
|}
47
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
48
|}
49
50
<span id='e0015'></span>
51
{| class="formulaSCP" style="width: 100%; text-align: center;" 
52
|-
53
| 
54
{| style="text-align: center; margin:auto;" 
55
|-
56
| <math>{\rho }_{nf}\left(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial v}+\right. </math><math>\left. v\frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+</math><math>{\mu }_{nf}\left(\frac{{\partial }^2v}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2v}{\partial y^2}\right)\mbox{,}</math>
57
|}
58
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
59
|}
60
61
<span id='e0020'></span>
62
{| class="formulaSCP" style="width: 100%; text-align: center;" 
63
|-
64
| 
65
{| style="text-align: center; margin:auto;" 
66
|-
67
| <math>\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}+</math><math>v\frac{\partial T}{\partial y}=\frac{k_{nf}}{{\left(\rho C_p\right)}_{nf}}\left(\frac{{\partial }^2T}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2T}{\partial y^2}\right)+</math><math>\frac{{\mu }_{nf}}{{\left(\rho C_p\right)}_{nf}}\left(4{\left(\frac{\partial u}{\partial x}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\right)}^2\right)\mbox{,}</math>
68
|}
69
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
70
|}
71
72
Here ''u'' and ''v'' are the velocities in the ''x'' and ''y'' directions respectively, ''T'' is the temperature, ''P  '' is the pressure, and effective density <math display="inline">\left({\rho }_{nf}\right)</math>, the effective dynamic viscosity <math display="inline">\left({\mu }_{nf}\right)</math>, the effective heat capacity <math display="inline">{\left(\rho C_p\right)}_{nf}</math> and the effective thermal conductivity <math display="inline">k_{nf}</math> of the nanofluid are defined as follows [[#b0035|[7]]]:
73
74
{| class="formulaSCP" style="width: 100%; text-align: center;" 
75
|-
76
| 
77
{| style="text-align: center; margin:auto;" 
78
|-
79
| <math>{\rho }_{nf}=(1-\phi ){\rho }_f+\phi {\rho }_s\mbox{,}\quad {\mu }_{nf}=</math><math>\frac{{\mu }_f}{{\left(1-\phi \right)}^{2.5}}\mbox{,}</math>
80
|-
81
|<math>{\left(\rho C_p\right)}_{nf}=(1-\phi ){\left(\rho C_p\right)}_f+</math><math>\phi {\left(\rho C_p\right)}_s</math>
82
|-
83
|<math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+2\phi (k_f-k_s)}</math>
84
|}
85
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
86
|}
87
88
The relevant boundary conditions are as follows:
89
90
{| class="formulaSCP" style="width: 100%; text-align: center;" 
91
|-
92
| 
93
{| style="text-align: center; margin:auto;" 
94
|-
95
| <math>v=v_w=dh/dt\mbox{,}\quad T=T_H\mbox{at}\quad y=h(t)\mbox{,}</math>
96
|-
97
|<math>v=\partial u/\partial y=\partial T/\partial y=0\mbox{at}\quad y=</math><math>0\mbox{.}</math>
98
|}
99
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
100
|}
101
102
We introduce these parameters:
103
104
<span id='e0035'></span>
105
{| class="formulaSCP" style="width: 100%; text-align: center;" 
106
|-
107
| 
108
{| style="text-align: center; margin:auto;" 
109
|-
110
| <math>\eta =\frac{y}{\left[l{\left(1-\alpha t\right)}^{1/2}\right]}\mbox{,}\quad u=</math><math>\frac{\alpha x}{\left[2(1-\alpha t)\right]}f^{{'}}(\eta )\mbox{,}</math>
111
|-
112
|<math>v=-\frac{\alpha l}{\left[2{\left(1-\alpha t\right)}^{1/2}\right]}f(\eta )\mbox{,}\quad \theta =</math><math>\frac{T}{T_H}\mbox{,}</math>
113
|-
114
|<math>A_1=(1-\phi )+\phi \frac{{\rho }_s}{{\rho }_f}\mbox{.}</math>
115
|}
116
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
117
|}
118
119
Substituting the above variables into  [[#e0010|(2)]] and [[#e0015|(3)]] and then eliminating the pressure gradient from the resulting equations give
120
121
<span id='e0040'></span>
122
{| class="formulaSCP" style="width: 100%; text-align: center;" 
123
|-
124
| 
125
{| style="text-align: center; margin:auto;" 
126
|-
127
| <math>f^{iv}-S\quad A_1{\left(1-\phi \right)}^{2.5}\left(\eta f^{{'''}}+\right. </math><math>\left. 3f^{{''}}+f^{{'}}f^{{''}}-{ff}^{{'''}}\right)=</math><math>0\mbox{,}</math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
130
|}
131
132
Using [[#e0035|(7)]], Eqs.  [[#e0015|(3)]] and [[#e0020|(4)]] reduces to the following differential equations:
133
134
<span id='e0045'></span>
135
{| class="formulaSCP" style="width: 100%; text-align: center;" 
136
|-
137
| 
138
{| style="text-align: center; margin:auto;" 
139
|-
140
| <math>{\theta }^{{''}}+Pr\quad S\left(\frac{A_2}{A_3}\right)\left(f{\theta }^{{'}}-\right. </math><math>\left. \eta {\theta }^{{'}}\right)+\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}\left(f^{{''}2}+\right. </math><math>\left. 4{\delta }^2f^{{'}2}\right)=0\mbox{,}</math>
141
|}
142
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
143
|}
144
145
Here <math display="inline">A_2</math> and <math display="inline">A_3</math> are constants given by
146
147
<span id='e0050'></span>
148
{| class="formulaSCP" style="width: 100%; text-align: center;" 
149
|-
150
| 
151
{| style="text-align: center; margin:auto;" 
152
|-
153
| <math>A_2=(1-\phi )+\phi \frac{{\left(\rho C_p\right)}_s}{{\left(\rho C_p\right)}_f}\mbox{,}\quad A_3=</math><math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+2\phi (k_f-k_s)}</math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
156
|}
157
158
With these boundary conditions:
159
160
<span id='e0055'></span>
161
{| class="formulaSCP" style="width: 100%; text-align: center;" 
162
|-
163
| 
164
{| style="text-align: center; margin:auto;" 
165
|-
166
| <math>f(0)=0\mbox{,}\quad f^{{''}}(0)=0\mbox{,}</math>
167
|-
168
|<math>f(1)=1\mbox{,}\quad f^{{'}}(1)=0\mbox{,}</math>
169
|-
170
|<math>{\theta }^{{'}}(0)=0\mbox{,}\quad \theta (1)=1\mbox{.}</math>
171
|}
172
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
173
|}
174
175
where ''S'' is the squeeze number, ''Pr'' is the Prandtl number and ''Ec'' is the Eckert number, which are defined as follows:
176
177
{| class="formulaSCP" style="width: 100%; text-align: center;" 
178
|-
179
| 
180
{| style="text-align: center; margin:auto;" 
181
|-
182
| <math>S=\frac{\alpha l^2}{2{\upsilon }_f}\mbox{,}\quad Pr=</math><math>\frac{{\mu }_f{\left(\rho C_p\right)}_f}{{\rho }_fk_f}\mbox{,}\quad Ec=</math><math>\frac{{\rho }_f}{{\left(\rho C_p\right)}_f}{\left(\frac{\alpha x}{2\left(1-\alpha t\right)}\right)}^2\mbox{,}\quad \delta =</math><math>\frac{l}{x}\mbox{,}</math>
183
|}
184
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
185
|}
186
187
<span id='f0005'></span>
188
189
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
190
|-
191
|
192
193
194
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr1.jpg|center|348px|Schematic of the two cases of problems with coupled nonlinear equations in ...]]
195
196
197
|-
198
| <span style="text-align: center; font-size: 75%;">
199
200
Fig. 1.
201
202
Schematic of the two cases of problems with coupled nonlinear equations in fluids mechanic.
203
204
</span>
205
|}
206
207
===2.2. Case 2===
208
209
The second case ([[#f0005|Fig. 1]], right) consists of two vertical flat plates separated by a distance of 2''b  ''. A non-Newtonian fluid flows between them due to natural convection. The walls at <math display="inline">x=+b</math> and <math display="inline">x=-b</math> are held at constant temperatures <math display="inline">T_2</math> and <math display="inline">T_1</math>, respectively, where <math display="inline">T_1>T_2</math>. This difference in temperature causes the fluid near the wall at <math display="inline">x=-b</math> to rise and the fluid near the wall at <math display="inline">x=+b</math> to fall. The fluid is a non-Newtonian Sodium Alginate (SA) based nanofluid containing Cu and Ag nanoparticles. It is assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. The effective density <math display="inline">{\rho }_{nf}</math>, the effective dynamic viscosity <math display="inline">{\mu }_{nf}</math>, the heat capacitance <math display="inline">{\left(\rho C_p\right)}_{nf}</math> and the thermal conductivity <math display="inline">k_{nf}</math> of the nanofluid are given as follows [[#b0035|[7]]]:
210
211
{| class="formulaSCP" style="width: 100%; text-align: center;" 
212
|-
213
| 
214
{| style="text-align: center; margin:auto;" 
215
|-
216
| <math>{\rho }_{nf}={\rho }_f(1-\phi )+{\rho }_s\phi </math>
217
|}
218
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
219
|}
220
221
{| class="formulaSCP" style="width: 100%; text-align: center;" 
222
|-
223
| 
224
{| style="text-align: center; margin:auto;" 
225
|-
226
| <math>{\mu }_{nf}=\frac{{\mu }_f}{{\left(1-\phi \right)}^{2.5}}</math>
227
|}
228
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
229
|}
230
231
{| class="formulaSCP" style="width: 100%; text-align: center;" 
232
|-
233
| 
234
{| style="text-align: center; margin:auto;" 
235
|-
236
| <math>{\left(\rho C_p\right)}_{nf}={\left(\rho C_p\right)}_f(1-</math><math>\phi )+{\left(\rho C_p\right)}_s\phi </math>
237
|}
238
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
239
|}
240
241
{| class="formulaSCP" style="width: 100%; text-align: center;" 
242
|-
243
| 
244
{| style="text-align: center; margin:auto;" 
245
|-
246
| <math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+\phi (k_f-k_s)}</math>
247
|}
248
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
249
|}
250
251
Here, <math display="inline">\phi </math> is the solid volume fraction. By definition following are the similarity variables:
252
253
{| class="formulaSCP" style="width: 100%; text-align: center;" 
254
|-
255
| 
256
{| style="text-align: center; margin:auto;" 
257
|-
258
| <math>V=\frac{\upsilon }{V_0}\mbox{,}\quad X=\frac{x}{b}\mbox{,}\quad \theta =</math><math>\frac{T-T_m}{T_1-T_2}\mbox{,}</math>
259
|}
260
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
261
|}
262
263
Under these assumptions and following the nanofluid model proposed by Maxwell–Garnett (MG) model [[#b0045|[9]]], the Navier–Stokes and energy equations can be reduced to the following pair of ordinary differential equations:
264
265
<span id='e0090'></span>
266
{| class="formulaSCP" style="width: 100%; text-align: center;" 
267
|-
268
| 
269
{| style="text-align: center; margin:auto;" 
270
|-
271
| <math>\frac{d^2V}{{dX}^2}+6\delta {\left(1-\phi \right)}^{2.5}{\left(\frac{dV}{dX}\right)}^2\frac{d^2V}{{dX}^2}+</math><math>\theta =0\mbox{,}</math>
272
|}
273
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
274
|}
275
276
<span id='e0095'></span>
277
{| class="formulaSCP" style="width: 100%; text-align: center;" 
278
|-
279
| 
280
{| style="text-align: center; margin:auto;" 
281
|-
282
| <math>\frac{d^2\theta }{{dX}^2}+Ec\cdot Pr\cdot \left(\frac{{\left(1-\phi \right)}^{-2.5}}{A_1}\right){\left(\frac{dV}{dX}\right)}^2+</math><math>2\delta Ec\cdot Pr\cdot \left(\frac{1}{A_1}\right){\left(\frac{dV}{dX}\right)}^4=</math><math>0\mbox{.}</math>
283
|}
284
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
285
|}
286
287
where Prandtl number (''Pr''), Eckert number (''Ec  ''), dimensionless non-Newtonian viscosity (<math display="inline">\delta </math>) and <math display="inline">A_1</math> have the following forms:
288
289
{| class="formulaSCP" style="width: 100%; text-align: center;" 
290
|-
291
| 
292
{| style="text-align: center; margin:auto;" 
293
|-
294
| <math>Ec=\frac{{\rho }_fV_0^2}{{\left(\rho C_p\right)}_f(T_1-T_2)}\mbox{,}\quad Pr=</math><math>\frac{{\mu }_f{\left(\rho C_p\right)}_f}{{\rho }_fk_f}\mbox{,}\quad \delta =</math><math>\frac{6{\beta }_3V_0^2}{{\mu }_fb^2}</math>
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
297
|}
298
299
{| class="formulaSCP" style="width: 100%; text-align: center;" 
300
|-
301
| 
302
{| style="text-align: center; margin:auto;" 
303
|-
304
| <math>A_1=\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\varphi (k_f-k_s)}{k_s+2k_f+2\varphi (k_f-k_s)}</math>
305
|}
306
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
307
|}
308
309
The appropriate boundary conditions are as follows:
310
311
<span id='e0110'></span>
312
{| class="formulaSCP" style="width: 100%; text-align: center;" 
313
|-
314
| 
315
{| style="text-align: center; margin:auto;" 
316
|-
317
| <math>X=-1:V=0\mbox{,}\quad \theta =0.5</math>
318
|-
319
|<math>X=+1:V=0\mbox{,}\quad \theta =-0.5</math>
320
|}
321
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
322
|}
323
324
==3. Principle of analytical methods==
325
326
===3.1. Differential Transformation Method (DTM)===
327
328
For understanding the concept of DTM, we suppose that <math display="inline">x(t)</math> is an analytic function in domain ''D  '', and <math display="inline">t=t_i</math> represents any point in the domain. The function <math display="inline">x(t)</math> is then represented by one power series whose center is located at <math display="inline">t_i</math>. The Taylor series expansion function of <math display="inline">x(t)</math> is in form of
329
330
<span id='e0115'></span>
331
{| class="formulaSCP" style="width: 100%; text-align: center;" 
332
|-
333
| 
334
{| style="text-align: center; margin:auto;" 
335
|-
336
| <math>x(t)=\sum_{k=0}^{\infty }\frac{{\left(t-t_i\right)}^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=t_i}\quad \forall t\in D</math>
337
|}
338
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
339
|}
340
341
The Maclaurin series of <math display="inline">x(t)</math> can be obtained by taking <math display="inline">t_i=0</math> in Eq. [[#e0115|(23)]] as follows:
342
343
{| class="formulaSCP" style="width: 100%; text-align: center;" 
344
|-
345
| 
346
{| style="text-align: center; margin:auto;" 
347
|-
348
| <math>x(t)=\sum_{k=0}^{\infty }\frac{t^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=0}\quad \forall t\in D</math>
349
|}
350
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
351
|}
352
353
As explained in Ref. [[#b0050|[10]]], the differential transformation of the function <math display="inline">x(t)</math> is defined as follows:
354
355
{| class="formulaSCP" style="width: 100%; text-align: center;" 
356
|-
357
| 
358
{| style="text-align: center; margin:auto;" 
359
|-
360
| <math>X(k)=\sum_{k=0}^{\infty }\frac{H^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=0}</math>
361
|}
362
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
363
|}
364
365
where <math display="inline">X(k)</math> represents the transformed function and <math display="inline">x(t)</math> is the original function. The differential spectrum of <math display="inline">X(k)</math> is confined within the interval <math display="inline">t\in [0\mbox{,}H]</math>, where ''H'' is a constant value and it can be assumed as unity in common DTM, but for multi-step DTM it should be considered as the length of ''t  '' steps. When <math display="inline">H\rightarrow \infty </math> the methods no longer work and Pade approximation should be applied. More information about ''H'' can be found in Ref.  [[#b0100|[20]]]. The differential inverse transform of <math display="inline">X(k)</math> is defined as follows:
366
367
<span id='e0130'></span>
368
{| class="formulaSCP" style="width: 100%; text-align: center;" 
369
|-
370
| 
371
{| style="text-align: center; margin:auto;" 
372
|-
373
| <math>x(t)=\sum_{k=0}^{\infty }{\left(\frac{t}{H}\right)}^kX(k)</math>
374
|}
375
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
376
|}
377
378
It is clear that the concept of differential transformation is based upon the Taylor series expansion. The values of function <math display="inline">X(k)</math> at values of argument ''k  '' are referred to as discrete, i.e. <math display="inline">X(0)</math> is known as the zero discrete, <math display="inline">X(1)</math> as the first discrete, etc. The more the discrete available, the more precise it is possible to restore the unknown function. The function <math display="inline">x(t)</math> consists of the ''T  ''-function <math display="inline">X(k)</math>, and its value is given by the sum of the ''T  ''-function with <math display="inline">(t/H)k</math> as its coefficient. In real applications, with the right choice of constant ''H'', the larger values of argument ''k  '' will lead to rapid reduction of the discrete of spectrum. The function <math display="inline">x(t)</math> is expressed by a finite series and Eq. [[#e0130|(26)]] can be written as follows:
379
380
{| class="formulaSCP" style="width: 100%; text-align: center;" 
381
|-
382
| 
383
{| style="text-align: center; margin:auto;" 
384
|-
385
| <math>x(t)=\sum_{k=0}^n{\left(\frac{t}{H}\right)}^kX(k)</math>
386
|}
387
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
388
|}
389
390
where ''n'' is the number of statements of the DTM. Generally, by increasing ''n'', DTM accuracy will be increased, but it depends on ''H'' and time step’s length  [[#b0100|[20]]]. Actually, ''H'' depends on the time steps which for classical DTM is considered unity, but for Multi step DTM or Ms-DTM it is equal to the time step value. Some important mathematical operations performed by differential transform method are listed in  [[#t0005|Table 1]]. As described before, one of the most advantages of DTM is its independence of small parameter, linearization or perturbation. Also, it does not need to determine auxiliary function, auxiliary parameter or suitable initial guess against other analytical methods.
391
392
<span id='t0005'></span>
393
394
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
395
|+
396
397
Table 1.
398
399
Some fundamental operations of the differential transform method.
400
401
|-
402
403
! Origin function
404
! Transformed function
405
|-
406
407
| <math display="inline">x(t)=\alpha f(x)\pm \beta g(t)</math>
408
| <math display="inline">X(k)=\alpha F(k)\pm \beta G(k)</math>
409
|-
410
411
| <math display="inline">x(t)=\frac{d^mf(t)}{{dt}^m}</math>
412
| <math display="inline">X(k)=\frac{\left(k+m)!F(k+m\right)}{k!}</math>
413
|-
414
415
| <math display="inline">x(t)=f(t)g(t)</math>
416
| <math display="inline">X(k)={\sum }_{l=0}^kF(l)G(k-l)</math>
417
|-
418
419
| <math display="inline">x(t)=t^m</math>
420
| <math display="inline">X(k)=\delta (k-m)=\begin{array}{ll}
421
1\mbox{,} & \mbox{if}\quad k=m\\
422
0\mbox{,} & \mbox{if}\quad k\quad \not =\quad m\mbox{.}
423
\end{array}</math>
424
|-
425
426
| <math display="inline">x(t)=exp(t)</math>
427
| <math display="inline">X(k)=\frac{1}{k!}</math>
428
|-
429
430
| <math display="inline">x(t)=sin(\omega t+\alpha )</math>
431
| <math display="inline">X(k)=\frac{{\omega }^k}{k!}sin\left(\frac{k\pi }{2}+\right. </math><math>\left. \alpha \right)</math>
432
|-
433
434
| <math display="inline">x(t)=cos(\omega t+\alpha )</math>
435
| <math display="inline">X(k)=\frac{{\omega }^k}{k!}cos\left(\frac{k\pi }{2}+\right. </math><math>\left. \alpha \right)</math>
436
|}
437
438
==4. Application of analytical methods on the problem==
439
440
===4.1. Application of DTM on case 1===
441
442
Now Differential Transformation Method has been applied into the governing equations. Taking the differential transforms of Eqs. [[#e0040|(8)]], [[#e0045|(9)]] and [[#e0050|(10)]] with respect to <math display="inline">\chi </math> and considering ''H'' = 1 gives:
443
444
{| class="formulaSCP" style="width: 100%; text-align: center;" 
445
|-
446
| 
447
{| style="text-align: center; margin:auto;" 
448
|-
449
| <math>(k+1)(k+2)(k+3)(k+4)F[k+4]+{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(\Delta [k-\right. </math><math>\left. m-1](m+1)(m+2)(m+3)F[m+3]\right)</math>
450
|-
451
|<math>\quad -3S(k+1)(k+2)F[k+2]-{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)F[k-m+1](m+1)(m+2)F[m+2]\right)</math>
452
|-
453
|<math>\quad +{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(F[k-\right. </math><math>\left. m](m+1)(m+2)(m+3)F[m+3]\right)=0\mbox{,}</math>
454
|-
455
|<math>\Delta [m]=\begin{array}{ll}
456
1 & m=1\\
457
0 & m\quad \not =\quad 1
458
\end{array}</math>
459
|}
460
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
461
|}
462
463
{| class="formulaSCP" style="width: 100%; text-align: center;" 
464
|-
465
| 
466
{| style="text-align: center; margin:auto;" 
467
|-
468
| <math>F[0]=0\mbox{,}\quad F[1]=a_1\mbox{,}\quad F[2]=0\mbox{,}\quad F[3]=</math><math>a_2</math>
469
|}
470
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
471
|}
472
473
{| class="formulaSCP" style="width: 100%; text-align: center;" 
474
|-
475
| 
476
{| style="text-align: center; margin:auto;" 
477
|-
478
| <math>(k+1)(k+2)\Theta [k+2]+Pr\cdot S\cdot \left(\frac{A_2}{A_3}\right)\sum_{m=0}^k\left(F[k-\right. </math><math>\left. m](m+1)\Theta [m+1]\right)</math>
479
|-
480
|<math>\quad -Pr\cdot S\cdot \left(\frac{A_2}{A_3}\right)\sum_{m=0}^k\left(\Delta [k-\right. </math><math>\left. m](m+1)\Theta [m+1]\right)</math>
481
|-
482
|<math>\quad +\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)\left(k-m+2\right)F[k-m+2](m+\right. </math><math>\left. 1)(m+2)F[m+2]\right)</math>
483
|-
484
|<math>\quad +4\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)F[k-m+1](m+1)F[m+1]\right)\mbox{,}</math>
485
|-
486
|<math>\Delta [m]=\begin{array}{ll}
487
1 & m=1\\
488
0 & m\quad \not =\quad 1
489
\end{array}</math>
490
|}
491
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
492
|}
493
494
{| class="formulaSCP" style="width: 100%; text-align: center;" 
495
|-
496
| 
497
{| style="text-align: center; margin:auto;" 
498
|-
499
| <math>\Theta [0]=a_3\mbox{,}\quad \Theta [1]=0</math>
500
|}
501
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
502
|}
503
504
where <math display="inline">F[k]</math> and <math display="inline">\Theta [k]</math> are the differential transforms of <math display="inline">f(\eta )\mbox{,}\theta (\eta )</math> and <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> are constants which can be obtained through boundary condition. This problem can be solved as follows:
505
506
<span id='e0160'></span>
507
{| class="formulaSCP" style="width: 100%; text-align: center;" 
508
|-
509
| 
510
{| style="text-align: center; margin:auto;" 
511
|-
512
| <math>F[0]=0\mbox{,}\quad F[1]=a_1\mbox{,}\quad F[2]=0\mbox{,}\quad F[3]=</math><math>a_2\mbox{,}\quad F[4]=0</math>
513
|-
514
|<math>F[5]=\frac{3}{20}S\quad A_1{\left(1-\phi \right)}^{2.5}a_2+</math><math>\frac{1}{20}S\quad A_1{\left(1-\phi \right)}^{2.5}a_1a_2+</math><math>\frac{1}{20}a_1a_2\mbox{,}\ldots </math>
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
517
|}
518
519
<span id='e0165'></span>
520
{| class="formulaSCP" style="width: 100%; text-align: center;" 
521
|-
522
| 
523
{| style="text-align: center; margin:auto;" 
524
|-
525
| <math>\Theta [0]=a_3\mbox{,}\quad \Theta [1]=0\mbox{,}\quad \Theta [2]=</math><math>-2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2a_1^2\mbox{,}</math>
526
|-
527
|<math>\Theta [3]=0\mbox{,}</math>
528
|-
529
|<math>\Theta [4]=\frac{1}{3}\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}Pr\quad S\left(\frac{A_2}{A_3}\right)a_1^3{\delta }^2-</math><math>3\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_2^2-</math><math>2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_1a_2\mbox{,}</math>
530
|-
531
|<math>\Theta [5]=0\mbox{,}\ldots </math>
532
|}
533
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
534
|}
535
536
The above process is continuous. By substituting Eqs.  [[#e0160|(32)]] and [[#e0165|(33)]] into the main equation based on DTM, it can be obtained that the closed form of the solutions is as follows:
537
538
<span id='e0170'></span>
539
{| class="formulaSCP" style="width: 100%; text-align: center;" 
540
|-
541
| 
542
{| style="text-align: center; margin:auto;" 
543
|-
544
| <math>F(\eta )=a_1\eta +a_2{\eta }^3+\left(\frac{3}{20}{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}a_2+\right. </math><math>\left. \frac{1}{20}{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}a_1a_2+\right. </math><math>\left. \frac{1}{20}a_1a_2\right){\eta }^4+\cdots </math>
545
|}
546
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
547
|}
548
549
<span id='e0175'></span>
550
{| class="formulaSCP" style="width: 100%; text-align: center;" 
551
|-
552
| 
553
{| style="text-align: center; margin:auto;" 
554
|-
555
| <math>\theta (\eta )=a_3+\left(-2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2a_1^2\right){\eta }^2+</math><math>\left(\frac{1}{3}a_1^3\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}Pr\quad S\left(\frac{A_2}{A_3}\right){\delta }^2-\right. </math><math>\left. 3Pr\quad Ec\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_2^2-\right. </math><math>\left. 2Pr\quad Ec\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_1a_2\right){\eta }^4+</math><math>\cdots </math>
556
|}
557
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
558
|}
559
560
by substituting the boundary condition from Eq. [[#e0055|(11)]] into Eqs.  [[#e0170|(34)]] and [[#e0175|(35)]] in point <math display="inline">\eta =1</math> the values of <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> can be obtained. By substituting obtained <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> into Eqs.  [[#e0170|(34)]] and [[#e0175|(35)]], the expression of <math display="inline">F(\eta )</math> and <math display="inline">\Theta (\eta )</math> can be obtained. For example for Cu–water nanofluid when ''Pr'' = 6.2, ''Ec'' = 0.05, <math display="inline">\delta =0.1</math>, ''S'' = 0.1 and <math display="inline">\varphi =0.01</math> following equations will be obtained:
561
562
{| class="formulaSCP" style="width: 100%; text-align: center;" 
563
|-
564
| 
565
{| style="text-align: center; margin:auto;" 
566
|-
567
| <math>f(\eta )=1.4870\eta -0.47373{\eta }^3-0.01368{\eta }^5+</math><math>0.0001428{\eta }^6+0.0002479{\eta }^7-3.174\times {10}^{-7}{\eta }^8</math>
568
|}
569
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
570
|}
571
572
{| class="formulaSCP" style="width: 100%; text-align: center;" 
573
|-
574
| 
575
{| style="text-align: center; margin:auto;" 
576
|-
577
| <math>\theta (\eta )=1.227-0.0135{\eta }^2-0.20073{\eta }^4-</math><math>0.00935{\eta }^6+0.000176{\eta }^7-0.00374{\eta }^8\mbox{.}</math>
578
|}
579
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
580
|}
581
582
===4.2. Application of DTM on case 2===
583
584
Similarly, DTM is applied to Eqs. [[#e0090|(18)]] and [[#e0095|(19)]]. Their transformed form will be as follows:
585
586
<span id='e0190'></span>
587
{| class="formulaSCP" style="width: 100%; text-align: center;" 
588
|-
589
| 
590
{| style="text-align: center; margin:auto;" 
591
|-
592
| <math>\begin{array}{l}
593
6\delta {\left(1-\phi \right)}^{2.5}\left(\sum_{l=0}^k\left(\sum_{m=0}^l(k+1-l)(k+2-l)\overline{V}(k+2-l)(l+1-m)\overline{V}(l+1-m)(l+1)\overline{V}(l+1)\right)\right)\\
594
\quad +(k+1)(k+2)\overline{V}(k+2)+\Theta (k)=0\\
595
2\cdot \delta \cdot E\cdot Pr\cdot \left(\frac{1}{A_1}\right)\cdot \left(\sum_{l=0}^k\left(\sum_{m=0}^l\left(\sum_{n=0}^m(k+1-l)\overline{V}(k+1-l)(l+1)\overline{V}(l+1)(l+1-m)\overline{V}(l+1-m)(m-n+1)\overline{V}(m-n+1)\right)\right)\right)\\
596
\quad +E\cdot Pr\cdot \left(\frac{{\left(1-\phi \right)}^{-2.5}}{A_1}\right)\cdot \left(\sum_{l=0}^k(l+1)\overline{V}(l+1)(k+1-l)\overline{V}(k+1-l)\right)+(k+1)(k+2)\Theta (k+2)=0
597
\end{array}</math>
598
|}
599
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
600
|}
601
602
The boundary conditions can be written as follows:
603
604
{| class="formulaSCP" style="width: 100%; text-align: center;" 
605
|-
606
| 
607
{| style="text-align: center; margin:auto;" 
608
|-
609
| <math>\begin{array}{ll}
610
\overline{V}(0)=a\mbox{,} & \overline{V}(1)=b\mbox{,}\\
611
\Theta (0)=c\mbox{,} & \Theta (1)=d\mbox{.}
612
\end{array}</math>
613
|}
614
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
615
|}
616
617
In ''i''th step, by solving the set of coupled Eq.  [[#e0190|(38)]], <math display="inline">\overline{V}(i+2)</math> and <math display="inline">\Theta (i+2)</math> can be determined. For example using boundary condition and Eq. [[#e0110|(22)]] second terms will be
618
619
{| class="formulaSCP" style="width: 100%; text-align: center;" 
620
|-
621
| 
622
{| style="text-align: center; margin:auto;" 
623
|-
624
| <math>\begin{array}{l}
625
\overline{V}(2)=-\frac{1}{2}\frac{c}{1+6\cdot \delta \cdot \sqrt{1-\phi }\cdot b^2-12\delta \sqrt{1-\phi }\cdot b^2\cdot \phi +6\cdot \delta \sqrt{1-\phi }\cdot b^2\cdot {\phi }^2}\\
626
\Theta (2)=-\frac{1}{2}\cdot Ec\cdot Pr\cdot b^2\left(\frac{\left(1+2\cdot \delta \cdot \sqrt{1-\phi }\cdot b^2-4\delta \sqrt{1-\phi }\cdot b^2\cdot \phi +2\delta \sqrt{1-\phi }\cdot b^2\cdot {\phi }^2\right)}{\sqrt{1-\phi }\cdot A\cdot (1-2\phi +{\phi }^2)}\right)
627
\end{array}</math>
628
|}
629
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
630
|}
631
632
where <math display="inline">\Theta </math> and <math display="inline">\overline{V}</math> represent the DTM transformed form of <math display="inline">\theta </math> and ''V  '' respectively and <math display="inline">a\mbox{,}b\mbox{,}c</math> and ''d  '' are unknown coefficients that after specifying <math display="inline">\theta (X)</math> and <math display="inline">V(X)</math> and applying boundary condition (Eq. [[#e0110|(22)]]) into it, will be determined. For example when <math display="inline">Pr=\delta =Ec=1</math> and <math display="inline">\varphi =0.01</math> for Cu–SA following values were determined for <math display="inline">a\mbox{,}b\mbox{,}c</math> and ''d'' coefficients.
633
634
{| class="formulaSCP" style="width: 100%; text-align: center;" 
635
|-
636
| 
637
{| style="text-align: center; margin:auto;" 
638
|-
639
| <math>a=0.001549699393\mbox{,}\quad b=-0.08029165346\mbox{,}</math>
640
|-
641
|<math>c=0.003216310358\mbox{,}\quad d=-0.4999171902</math>
642
|}
643
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
644
|}
645
646
Finally, <math display="inline">\theta (X)</math> and <math display="inline">V(X)</math> when <math display="inline">Pr=\delta =Ec=1</math> and <math display="inline">\varphi =0.01</math> can be defined as follows:
647
648
{| class="formulaSCP" style="width: 100%; text-align: center;" 
649
|-
650
| 
651
{| style="text-align: center; margin:auto;" 
652
|-
653
| <math>\begin{array}{l}
654
V(X)=0.001549699393-0.08029165346X-0.001549699394X^2+0.08029165350X^3\\
655
\theta (X)=0.003216310358-0.4999171902X-0.003216310358X^2-0.000082809826X^3
656
\end{array}</math>
657
|}
658
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
659
|}
660
661
As seen in terms of above equation, although for increasing the accuracy, the number of statements has been increased, convergence of DTM is completely evident.
662
663
==5. Results and discussion==
664
665
As has been discussed, Newtonian and non-Newtonian nanofluids can be found in many industrial applications [[#b0105|[21]]], [[#b0110|[22]]], [[#b0115|[23]]], [[#b0120|[24]]], [[#b0125|[25]]], [[#b0130|[26]]], [[#b0135|[27]]] and [[#b0140|[28]]]. Their analysis and treatment can be performed by well-known analytical and numerical methods. Some of these methods have been employed for solving the engineering problems [[#b0145|[29]]], [[#b0150|[30]]], [[#b0155|[31]]] and [[#b0160|[32]]]. In our study, efficiency of DTM for solving these kinds of problems is examined through two different problems as introduced in the previous sections. Our DTM solutions will be compared to numerical solution presented in the literature [[#b0095|[19]]]. As mentioned before, in first case, heat transfer and nanofluid flow analysis in the unsteady squeezing nanofluids between parallel plates are studied using Differential Transformation Method (DTM) and results are compared with forth-order Runge–Kutta numerical method. [[#f0010|Fig. 2]] shows the results of DTM for solving the Eqs. [[#e0040|(8)]] and [[#e0045|(9)]] in different Eckert and squeeze numbers. As seen in these figures, DTM has a good agreement with numerical method in wide range of ''Ec'' and ''S'' numbers. Effect of Nanoparticles volume fraction on velocity and temperature profiles is shown in  [[#f0015|Fig. 3]]. Adding nanoparticles into the base fluid leads to increase in thermal boundary layer thickness while it has no significant effect on velocity boundary layer thickness. It is obvious that when nanoparticles were added into base fluid, heat transfer will increase due to their high thermal conductivity, and so temperature profiles will be decreased.
666
667
<span id='f0010'></span>
668
669
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
670
|-
671
|
672
673
674
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr2.jpg|center|px|Comparison of DTM and numerical results for (a) θ(η) when Pr=6.2, S=0.1, δ=0.1, ...]]
675
676
677
|-
678
| <span style="text-align: center; font-size: 75%;">
679
680
Fig. 2.
681
682
Comparison of DTM and numerical results for (a) <math display="inline">\theta (\eta )</math> when ''Pr'' = 6.2, ''S'' = 0.1, <math display="inline">\delta =0.1</math>, <math display="inline">\varphi =0.01</math> and (b) <math display="inline">f(\eta )</math> when ''Pr'' = 6.2, ''Ec'' = 0.05, <math display="inline">\delta =0.1</math>, <math display="inline">\varphi =0.01</math>.
683
684
</span>
685
|}
686
687
<span id='f0015'></span>
688
689
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
690
|-
691
|
692
693
694
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr3.jpg|center|px|Effect of nanoparticles volume fraction (φ) on (a) temperature profile and (b) ...]]
695
696
697
|-
698
| <span style="text-align: center; font-size: 75%;">
699
700
Fig. 3.
701
702
Effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on (a) temperature profile and (b) velocity profile when ''Pr'' = 6.2, ''Ec'' = 0.5, <math display="inline">\delta =0.1</math>, ''S'' = 1.0.
703
704
</span>
705
|}
706
707
For the second case, the base fluid is considered as a non-Newtonian fluid containing sodium alginate (SA) and two types of nanoparticles namely silver (Ag) and copper (Cu) are added. For showing the efficiency of analytical applied method (DTM), [[#t0010|Table 2]] and [[#t0015|Table 3]] presented values and errors for Ag–SA, respectively. These tables also confirm the accuracy of DTM for solving such kinds of problems. The effect of <math display="inline">\delta </math> number on non-dimensional velocity and temperature of the nanofluid is investigated through [[#f0020|Fig. 4]](a) and (b). These figures confirm that <math display="inline">\delta </math> has no effect on temperature variations but it reduces velocity values. The same phenomenon was also observed by Ziabakhsh and Domairry [[#b0045|[9]]]. [[#f0025|Fig. 5]] confirms that when nanoparticles volume fraction increases, velocity profiles increase but temperature values decrease due to increase in heat transfer. [[#f0025|Fig. 5]] shows the effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on velocity profile and temperature distribution for SA–TiO<sub>2</sub> nanofluid when <math display="inline">Ec=\delta =1</math>, while [[#f0030|Fig. 6]] depictesthe effect of volume fraction of copper nanoparticles.
708
709
<span id='t0010'></span>
710
711
Table 2.
712
713
Velocity and temperature profile values by applied methods for Ag–SA nanofluid profiles when <math display="inline">Pr=Ec=\delta =1</math>, <math display="inline">\phi =0.01</math>.
714
715
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
716
717
|-
718
719
! rowspan="2" | ''X''
720
! colspan="2" | ''V''(''X'')
721
! colspan="2" | <math display="inline">\theta </math>(''X'')
722
|-
723
724
! Numerical
725
! DTM
726
! Numerical
727
! DTM
728
|-
729
730
| −1.0
731
| 0.00
732
| 2 × 10<sup>−11</sup>
733
| 0.50
734
| 0.50
735
|-
736
737
| 0.45059686
738
| −0.9
739
| 0.013888702
740
| 0.01402428
741
| 0.45043148
742
|-
743
744
| −0.8
745
| 0.023620556
746
| 0.02368182
747
| 0.40071897
748
| 0.40113389
749
|-
750
751
| −0.7
752
| 0.029489465
753
| 0.02945437
754
| 0.35094362
755
| 0.35161056
756
|-
757
758
| −0.6
759
| 0.031888322
760
| 0.03182368
761
| 0.30114965
762
| 0.30202640
763
|-
764
765
| −0.5
766
| 0.031279886
767
| 0.03127150
768
| 0.25135346
769
| 0.25238090
770
|-
771
772
| −0.4
773
| 0.028164333
774
| 0.02827959
775
| 0.20155266
776
| 0.20267356
777
|-
778
779
| −0.3
780
| 0.023053394
781
| 0.02332968
782
| 0.15173412
783
| 0.15290389
784
|-
785
786
| −0.2
787
| 0.016454874
788
| 0.01690353
789
| 0.10188071
790
| 0.10307139
791
|-
792
793
| −0.1
794
| 0.008866496
795
| 0.00948289
796
| 0.05197647
797
| 0.05317557
798
|-
799
800
| 0.0
801
| 0.000776279
802
| 0.00154951
803
| 0.002010267
804
| 0.00321593
805
|-
806
807
| 0.1
808
| −0.007333249
809
| −0.00641485
810
| −0.04802206
811
| −0.04680801
812
|-
813
814
| 0.2
815
| −0.014979179
816
| −0.01392846
817
| −0.09811697
818
| −0.09689681
819
|-
820
821
| 0.3
822
| −0.021672314
823
| −0.02050956
824
| −0.14826378
825
| −0.14705093
826
|-
827
828
| 0.4
829
| −0.026912911
830
| −0.02567640
831
| −0.19844679
832
| −0.19727080
833
|-
834
835
| 0.5
836
| −0.030190188
837
| −0.02894723
838
| −0.24864875
839
| −0.24755700
840
|-
841
842
| 0.6
843
| −0.030988255
844
| −0.02984030
845
| −0.29885599
846
| −0.29791001
847
|-
848
849
| 0.7
850
| −0.028801308
851
| −0.02787389
852
| −0.34906512
853
| −0.34833031
854
|-
855
856
| 0.8
857
| −0.023159274
858
| −0.02256617
859
| −0.39929111
860
| −0.39881842
861
|-
862
863
| 0.9
864
| −0.013660270
865
| −0.01343546
866
| −0.44957637
867
| −0.44937485
868
|-
869
870
| 1.0
871
| 0.00
872
| −2 × 10<sup>−11</sup>
873
| −0.50
874
| −0.50
875
|}
876
877
<span id='t0015'></span>
878
879
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
880
|+
881
882
Table 3.
883
884
Errors (%) of applied methods obtained from [[#t0010|Table 2]]’s data compared by numerical method.
885
886
|-
887
888
! rowspan="2" | ''X''
889
! ''V''(''X'')
890
! <math display="inline">\theta </math>(''X'')
891
|-
892
893
! DTM
894
! DTM
895
|-
896
897
| −1.0
898
| 0.00
899
| 0.00
900
|-
901
902
| −0.9
903
| 0.00976
904
| 0.00037
905
|-
906
907
| −0.8
908
| 0.00259
909
| 0.00104
910
|-
911
912
| −0.7
913
| 0.00119
914
| 0.0019
915
|-
916
917
| −0.6
918
| 0.002027
919
| 0.00291
920
|-
921
922
| −0.5
923
| 0.000268
924
| 0.00409
925
|-
926
927
| −0.4
928
| 0.00409
929
| 0.00556
930
|-
931
932
| −0.3
933
| 0.01198
934
| 0.00771
935
|-
936
937
| −0.2
938
| 0.02727
939
| 0.01169
940
|-
941
942
| −0.1
943
| 0.06952
944
| 0.02307
945
|-
946
947
| 0.0
948
| 0.99607
949
| 0.59975
950
|-
951
952
| 0.1
953
| 0.125238
954
| 0.025281
955
|-
956
957
| 0.2
958
| 0.070145
959
| 0.012436
960
|-
961
962
| 0.3
963
| 0.053652
964
| 0.00818
965
|-
966
967
| 0.4
968
| 0.045945
969
| 0.005926
970
|-
971
972
| 0.5
973
| 0.041171
974
| 0.004391
975
|-
976
977
| 0.6
978
| 0.037045
979
| 0.003165
980
|-
981
982
| 0.7
983
| 0.032201
984
| 0.002105
985
|-
986
987
| 0.8
988
| 0.02561
989
| 0.001184
990
|-
991
992
| 0.9
993
| 0.016457
994
| 0.000448
995
|-
996
997
| 1.0
998
| 0.00
999
| 0.00
1000
|}
1001
1002
<span id='f0020'></span>
1003
1004
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1005
|-
1006
|
1007
1008
1009
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr4.jpg|center|px|Effect of δ number on (a) velocity profile (V(X)) and (b) temperature profile ...]]
1010
1011
1012
|-
1013
| <span style="text-align: center; font-size: 75%;">
1014
1015
Fig. 4.
1016
1017
Effect of <math display="inline">\delta </math> number on (a) velocity profile (''V''(''X  '')) and (b) temperature profile (<math display="inline">\theta </math>(''X  '')) for Cu–SA nanofluid when <math display="inline">Pr=Ec=0.5</math>, <math display="inline">\phi =0.05</math>.
1018
1019
</span>
1020
|}
1021
1022
<span id='f0025'></span>
1023
1024
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1025
|-
1026
|
1027
1028
1029
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr5.jpg|center|px|Effect of nanoparticles volume fraction (φ) on (a) velocity profile (V(X)) and ...]]
1030
1031
1032
|-
1033
| <span style="text-align: center; font-size: 75%;">
1034
1035
Fig. 5.
1036
1037
Effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on (a) velocity profile (''V''(''X  '')) and (b) temperature distribution (<math display="inline">\theta </math>(''X'')) for SA–TiO<sub>2</sub> nanofluid when <math display="inline">Ec=\delta =1</math>.
1038
1039
</span>
1040
|}
1041
1042
<span id='f0030'></span>
1043
1044
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;" 
1045
|-
1046
|
1047
1048
1049
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr6.jpg|center|px|Effect of nanoparticles volume fraction on (a) velocity profile (V(X)) and (b) ...]]
1050
1051
1052
|-
1053
| <span style="text-align: center; font-size: 75%;">
1054
1055
Fig. 6.
1056
1057
Effect of nanoparticles volume fraction on (a) velocity profile (''V''(''X  '')) and (b) temperature profile (<math display="inline">\theta (X)</math>) for Cu–SA nanofluid when <math display="inline">Pr=Ec=\delta =0.5</math>.
1058
1059
</span>
1060
|}
1061
1062
==6. Conclusion==
1063
1064
In present work, Differential Transformation Method (DTM) is applied for solving the coupled nonlinear differential equations in fluids mechanic to show the validity and simplicity of this method. For this aim, two cases of problems in nanofluid mechanics which have coupled nonlinear differential equations were selected and DTM was applied on them. For illustrating the accuracy of described method, a numerical method was also used to solve the problems. A very good agreement between these two methods was observed in both problems. Compared to previous works, DTM has a better agreement with numerical method compared to other analytical and perturbation methods. This DTM accuracy is due to independency to small parameter (''p'') compared to perturbation methods and direct solving of the equation without linearization or discretization.
1065
1066
==Acknowledgments==
1067
1068
D. Jing gratefully acknowledges the financial support from the National Natural Science Foundation of China (Nos. [[#gp005|51422604]] and [[#gp005|21276206]]) and China Fundamental Research Funds for the Central Universities.
1069
1070
==References==
1071
1072
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='b0005'></span>
1073
[[#b0005|[1]]] S.A. Atouei, K. Hosseinzadeh, M. Hatami; Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods; Appl. Therm. Eng., 89 (2015), pp. 299–305</li>
1074
<li><span id='b0010'></span>
1075
[[#b0010|[2]]] M. Hatami, G.R.M. Ahangar, D.D. Ganji; Refrigeration efficiency analysis for fully wet semi-spherical porous fins; Energy Convers. Manage., 84 (84) (2014), pp. 533–540</li>
1076
<li><span id='b0015'></span>
1077
[[#b0015|[3]]] M. Hatami, D.D. Ganji; Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si<sub>3</sub>N<sub>4</sub>); Ceram. Int., 40 (2014), pp. 6765–6775</li>
1078
<li><span id='b0020'></span>
1079
[[#b0020|[4]]] M. Hatami, D.D. Ganji; Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method; Powder Technol., 258 (2014), pp. 94–98</li>
1080
<li><span id='b0025'></span>
1081
[[#b0025|[5]]] M. Hatami, D.D. Ganji; Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods; Case Stud. Thermal Eng. (2014)</li>
1082
<li><span id='b0030'></span>
1083
[[#b0030|[6]]] A. Ahmadi, Kh. Hosseinzadeh, M. Hatami, D.D. Ganji; A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate; Powder Technol. (2014)</li>
1084
<li><span id='b0035'></span>
1085
[[#b0035|[7]]] G. Domairry, M. Hatami; Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method; J. Mole. Liq. (2014)</li>
1086
<li><span id='b0040'></span>
1087
[[#b0040|[8]]] M. Hatami, D.D. Ganji; Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation; Case Stud. Thermal Eng. (2014)</li>
1088
<li><span id='b0045'></span>
1089
[[#b0045|[9]]] Z. Ziabakhsh, G. Domairry; Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method; Commun. Nonlinear Sci. Numer. Simul., 14 (2009), pp. 1868–1880</li>
1090
<li><span id='b0050'></span>
1091
[[#b0050|[10]]] J.K. Zhou; Differential Transformation Method and its Application for Electrical Circuits; Hauzhang University Press, Wuhan, China (1986)</li>
1092
<li><span id='b0055'></span>
1093
[[#b0055|[11]]] S. Ghafoori, M. Motevalli, M.G. Nejad, F. Shakeri, D.D. Ganji, M. Jalaal; Efficiency of differential transformation method for nonlinear oscillation: comparison with HPM and VIM; Curr. Appl. Phys., 11 (2011), pp. 965–971</li>
1094
<li><span id='b0060'></span>
1095
[[#b0060|[12]]] H. Yahyazadeh, D.D. Ganji, A. Yahyazadeh, M. Taghi Khalili, P. Jalili, M. Jouya; Evaluation of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field by the differential transformation method; Therm. Sci., 16 (5) (2012), pp. 1281–1287</li>
1096
<li><span id='b0065'></span>
1097
[[#b0065|[13]]] J. Biazar, M. Eslami; Differential transform method for quadratic Riccati differential equation; Int. J. Nonlinear Sci., 9 (4) (2010), pp. 444–447</li>
1098
<li><span id='b0070'></span>
1099
[[#b0070|[14]]] A. Gokdogan, M. Merdan, A. Yildirim; The modified algorithm for the differential transform method to solution of Genesio systems; Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 45–51</li>
1100
<li><span id='b0075'></span>
1101
[[#b0075|[15]]] F. Ayaz; On the two-dimensional differential transform method; Appl. Math. Comput., 143 (2003), pp. 361–374</li>
1102
<li><span id='b0080'></span>
1103
[[#b0080|[16]]] Q. Ni, Z.L. Zhang, L. Wang; Application of the differential transformation method to vibration analysis of pipes conveying fluid; Appl. Math. Comput., 217 (2011), pp. 7028–7038</li>
1104
<li><span id='b0085'></span>
1105
[[#b0085|[17]]] D.D. Ganji, S.H. Hashemi Kachapi; Progress in Nonlinear Science: Analysis of Nonlinear Equations in Fluids; Asian Academic Publisher Limited, Hong Kong, China (2011)</li>
1106
<li><span id='b0090'></span>
1107
[[#b0090|[18]]] M. Hatami, D.D. Ganji; Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods; Case Stud. Thermal Eng., 2 (2014), pp. 14–22</li>
1108
<li><span id='b0095'></span>
1109
[[#b0095|[19]]] K.R. Rajagopal, T.Y. Na; Natural convection flow of a non-Newtonian fluid between two vertical flat plates; Acta Mech., 54 (1985), pp. 39–46</li>
1110
<li><span id='b0100'></span>
1111
[[#b0100|[20]]] C. Bervillier; Status of the differential transformation method; Appl. Math. Comput., 218 (2012), pp. 10158–10170</li>
1112
<li><span id='b0105'></span>
1113
[[#b0105|[21]]] M. Hatami, D.D. Ganji; Heat transfer and flow analysis for SA–TiO<sub>2</sub> non-Newtonian nanofluid passing through the porous media between two coaxial cylinders; J. Mole. Liq., 188 (2013), pp. 155–161</li>
1114
<li><span id='b0110'></span>
1115
[[#b0110|[22]]] M. Hatami, J. Hatami, D.D. Ganji; Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel; Comput. Meth. Prog. Biomed., 113 (2) (2014), pp. 632–641</li>
1116
<li><span id='b0115'></span>
1117
[[#b0115|[23]]] G. Domairry, M. Hatami; Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method; J. Mole. Liq. (2014)</li>
1118
<li><span id='b0120'></span>
1119
[[#b0120|[24]]] M. Hatami, D.D. Ganji; Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method; Energy Convers. Manage., 78 (2014), pp. 347–358</li>
1120
<li><span id='b0125'></span>
1121
[[#b0125|[25]]] M. Hatami, R. Nouri, D.D. Ganji; Forced convection analysis for MHD Al<sub>2</sub>O<sub>3</sub>–water nanofluid flow over a horizontal plate; J. Mole. Liq., 187 (2013), pp. 294–301</li>
1122
<li><span id='b0130'></span>
1123
[[#b0130|[26]]] M. Sheikholeslami, M. Hatami, D.D. Ganji; Analytical investigation of MHD nanofluid flow in a semi-porous channel; Powder Technol., 246 (2013), pp. 327–336</li>
1124
<li><span id='b0135'></span>
1125
[[#b0135|[27]]] M. Sheikholeslami, M. Hatami, D.D. Ganji; Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field; J. Mole. Liq., 190 (2013), pp. 112–120</li>
1126
<li><span id='b0140'></span>
1127
[[#b0140|[28]]] M. Hatami, M. Sheikholeslami, D.D. Ganji; Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method; Powder Technol., 253 (2014), pp. 769–779</li>
1128
<li><span id='b0145'></span>
1129
[[#b0145|[29]]] M. Hatami, D.D. Ganji; Thermal performance of circular convective–radiative porous fins with different section shapes and materials; Energy Convers. Manage., 76 (2013), pp. 185–193</li>
1130
<li><span id='b0150'></span>
1131
[[#b0150|[30]]] M. Hatami, A. Hasanpour, D.D. Ganji; Heat transfer study through porous fins (Si<sub>3</sub>N<sub>4</sub> and AL) with temperature-dependent heat generation; Energy Convers. Manage., 74 (2013), pp. 9–16</li>
1132
<li><span id='b0155'></span>
1133
[[#b0155|[31]]] M. Hatami, D.D. Ganji; Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis; Int. J. Refrig. (2013) [http://dx.doi.org/10.1016/j.ijrefrig.2013.11.002 http://dx.doi.org/10.1016/j.ijrefrig.2013.11.002]</li>
1134
<li><span id='b0160'></span>
1135
[[#b0160|[32]]] M. Hatami, G. Domairry; Transient vertically motion of a soluble particle in a Newtonian fluid media; Powder Technol., 253 (2014), pp. 481–485</li>
1136
</ol>
1137

Return to Hatami Jing 2016a.

Back to Top

Document information

Published on 12/04/17

Licence: Other

Document Score

0

Views 148
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?