You do not have permission to edit this page, for the following reason:
You can view and copy the source of this page.
==Abstract==
In this study, a simple and high accurate series-based method called Differential Transformation Method (DTM) is used for solving the coupled nonlinear differential equations in fluids mechanic problems. The concept of the DTM is briefly introduced, and its application on two different cases, natural convection of a non-Newtonian nanofluid between two vertical plates and Newtonian nanofluid flow between two horizontal plates, has been studied. DTM results are compared with those obtained by a numerical solution (Fourth-order Runge–Kutta) to show the accuracy of the proposed method. Results reveal that DTM is very effective and convenient which can achieve more reliable results compared to other analytical methods in solving some engineering and sciences problems.
==Keywords==
Coupled nonlinear differential equations; Differential Transformation Method; Natural convection; Newtonian and non-Newtonian nanofluids
==1. Introduction==
The nonlinear problems and phenomena can be modeled by ordinary or partial nonlinear differential equations to find their physical behavior in certain cases. Most of these described physical and mechanical problems have a set of coupled nonlinear differential equations. For example, heat transfer by natural convection which commonly occurs in many physical and engineering applications such as geothermal systems, chemical catalytic reactors, and heat exchangers has a system of coupled nonlinear differential equations. One of the simple and reliable methods for solving the system of coupled nonlinear differential equations is analytical solution which recently is widely used in solving many problems [[#b0005|[1]]], [[#b0010|[2]]], [[#b0015|[3]]], [[#b0020|[4]]], [[#b0025|[5]]], [[#b0030|[6]]], [[#b0035|[7]]] and [[#b0040|[8]]]. Ziabakhsh and Domairry [[#b0045|[9]]] have studied the natural convection of a non-Newtonian fluid between two infinite parallel vertical flat plates by Homotopy Analysis Method (HAM) which is a general form of the HPM.
An analytical method called Differential Transformation Method (DTM) has also been introduced for nonlinear problem solution. DTM is an analytical method based on Taylor series. It constructs an analytical solution in the form of a polynomial. Actually, DTM is different from the traditional high order Taylor series method, which requires symbolic calculation of the necessary derivatives of the data functions. This method was firstly applied in the engineering field by Zhou [[#b0050|[10]]] and its abilities attracted many authors to use this method for solving the nonlinear equations. DTM or improved shape forms of it (Ms-DTM and Hybrid-DTM) can solve any coupled nonlinear equations set. They can also be used for three dimensional problems. Ghafoori et al. [[#b0055|[11]]] solved a nonlinear oscillation equation by DTM and they revealed that DTM results are more accurate than HPM and VIM (Variation Iteration Method). Yahyazadeh et al. [[#b0060|[12]]] evaluated the natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field using DTM. Also, Biazar and Eslami [[#b0065|[13]]] considered DTM to solve the quadratic Riccati differential equation and the derived results by DTM were compared with the results of HAM and ADM (adomian decomposition method). They showed that DTM results are more effective and favorable than HAM and ADM results. Gokdogan et al. [[#b0070|[14]]] acquired an approximate analytical solution of the chaotic Genesio system by a modified DTM. Ayaz [[#b0075|[15]]] studied two-dimensional differential transform method for solving an initial value problem in partial differential equations (PDEs). In another application of DTM, the natural frequencies and critical flow velocities of pipes conveying fluid with several typical boundary conditions were obtained by Ni et al. [[#b0080|[16]]]. Although many analytical methods have been presented in the literature, DTM is expected to find more valuable applications due to the following advantages:
* Unlike perturbation techniques, DTM is independent of any small parameter such as ''p'' in HPM. DTM can thus be applied no matter if governing equations and boundary/initial conditions of a given nonlinear problem contain small or large quantities or not.
* DTM does not need to calculate auxiliary parameter <math display="inline">{\hslash }_1</math> through ''h''-curves against Homotopy Analysis method (HAM).
* DTM does not need to determine auxiliary function, auxiliary parameter or guess suitable initial values. Unlike HAM, it can solve the equations directly.
* DTM provides us with great freedom to express solutions of a given nonlinear problem by means of Pade approximant and Ms-DTM.
This paper aimed to apply DTM for system of coupled nonlinear equations and testify the reliability of DTM by comparing its results with HPM. For showing the accuracy of DTM in described problems, two cases of problems, natural convection of a non-Newtonian fluid between two vertical plates and Newtonian fluid flow analysis between two horizontal plates, were solved. As an important result, it was found that the DTM results are more accurate than those obtained by HPM in some areas. After this verification, the effects of some physical parameters were analyzed to show the efficiency of DTM for this type of the problems.
==2. Problems description==
The study of the fluid flow between parallel plates has many applications in industries which motivated the researchers to investigate. Ziabakhsh and Domairry [[#b0045|[9]]] investigated the natural convection of non-Newtonian fluid between vertical parallel plates using HAM, and based on their work, Hatami and Ganji [[#b0090|[18]]] studied the effect of sodium alginate (SA) non-Newtonian nanofluid between parallel plates. Also, Rajagopal and Na [[#b0095|[19]]] presented a numerical solution for the natural convection of non-Newtonian fluids between vertical plates. In the following section, two cases of problems in fluid flow between parallel plates with coupled nonlinear differential equations will be introduced. It is aimed to investigate the efficiency of DTM in comparison with numerical solution.
===2.1. Case 1===
In first case the heat transfer analysis in the unsteady two-dimensional squeezing nanofluid flow between the infinite parallel plates ([[#f0005|Fig. 1]], left). The two plates are placed at <math display="inline">z=\pm l{\left(1-\alpha t\right)}^{1/2}=\pm h(t)</math>. For <math display="inline">\alpha >0</math>, the two plates are squeezed until they touch where <math display="inline">t=1/\alpha </math> and for <math display="inline">\alpha <0</math> the two plates are separated. The viscous dissipation effect, the generation of heat due to friction caused by shear in the flow, is retained. This effect is quite important in the case when the fluid is largely viscous or flowing at a high speed. This behavior occurs at high Eckert number (≫1). The symmetric nature of the flow is adopted. The fluid is a water based nanofluid containing Cu (copper) nanoparticles. The nanofluid is a two component mixture with the following assumptions: incompressible; no-chemical reaction; negligible viscous dissipation; negligible radiative heat transfer; nano-solid-particles and the base fluid are in thermal equilibrium and no slip occurs between them. The governing equations for momentum and energy in unsteady two dimensional flow of a nanofluid are as follows [[#b0085|[17]]]:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=</math><math>0\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
|}
<span id='e0010'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\rho }_{nf}\left(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial v}+\right. </math><math>\left. v\frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+</math><math>{\mu }_{nf}\left(\frac{{\partial }^2u}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2u}{\partial y^2}\right)\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
|}
<span id='e0015'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\rho }_{nf}\left(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial v}+\right. </math><math>\left. v\frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+</math><math>{\mu }_{nf}\left(\frac{{\partial }^2v}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2v}{\partial y^2}\right)\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
|}
<span id='e0020'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}+</math><math>v\frac{\partial T}{\partial y}=\frac{k_{nf}}{{\left(\rho C_p\right)}_{nf}}\left(\frac{{\partial }^2T}{\partial x^2}+\right. </math><math>\left. \frac{{\partial }^2T}{\partial y^2}\right)+</math><math>\frac{{\mu }_{nf}}{{\left(\rho C_p\right)}_{nf}}\left(4{\left(\frac{\partial u}{\partial x}\right)}^2+\right. </math><math>\left. {\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\right)}^2\right)\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
|}
Here ''u'' and ''v'' are the velocities in the ''x'' and ''y'' directions respectively, ''T'' is the temperature, ''P '' is the pressure, and effective density <math display="inline">\left({\rho }_{nf}\right)</math>, the effective dynamic viscosity <math display="inline">\left({\mu }_{nf}\right)</math>, the effective heat capacity <math display="inline">{\left(\rho C_p\right)}_{nf}</math> and the effective thermal conductivity <math display="inline">k_{nf}</math> of the nanofluid are defined as follows [[#b0035|[7]]]:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\rho }_{nf}=(1-\phi ){\rho }_f+\phi {\rho }_s\mbox{,}\quad {\mu }_{nf}=</math><math>\frac{{\mu }_f}{{\left(1-\phi \right)}^{2.5}}\mbox{,}</math>
|-
|<math>{\left(\rho C_p\right)}_{nf}=(1-\phi ){\left(\rho C_p\right)}_f+</math><math>\phi {\left(\rho C_p\right)}_s</math>
|-
|<math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+2\phi (k_f-k_s)}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
|}
The relevant boundary conditions are as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>v=v_w=dh/dt\mbox{,}\quad T=T_H\mbox{at}\quad y=h(t)\mbox{,}</math>
|-
|<math>v=\partial u/\partial y=\partial T/\partial y=0\mbox{at}\quad y=</math><math>0\mbox{.}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
|}
We introduce these parameters:
<span id='e0035'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\eta =\frac{y}{\left[l{\left(1-\alpha t\right)}^{1/2}\right]}\mbox{,}\quad u=</math><math>\frac{\alpha x}{\left[2(1-\alpha t)\right]}f^{{'}}(\eta )\mbox{,}</math>
|-
|<math>v=-\frac{\alpha l}{\left[2{\left(1-\alpha t\right)}^{1/2}\right]}f(\eta )\mbox{,}\quad \theta =</math><math>\frac{T}{T_H}\mbox{,}</math>
|-
|<math>A_1=(1-\phi )+\phi \frac{{\rho }_s}{{\rho }_f}\mbox{.}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
|}
Substituting the above variables into [[#e0010|(2)]] and [[#e0015|(3)]] and then eliminating the pressure gradient from the resulting equations give
<span id='e0040'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>f^{iv}-S\quad A_1{\left(1-\phi \right)}^{2.5}\left(\eta f^{{'''}}+\right. </math><math>\left. 3f^{{''}}+f^{{'}}f^{{''}}-{ff}^{{'''}}\right)=</math><math>0\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
|}
Using [[#e0035|(7)]], Eqs. [[#e0015|(3)]] and [[#e0020|(4)]] reduces to the following differential equations:
<span id='e0045'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\theta }^{{''}}+Pr\quad S\left(\frac{A_2}{A_3}\right)\left(f{\theta }^{{'}}-\right. </math><math>\left. \eta {\theta }^{{'}}\right)+\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}\left(f^{{''}2}+\right. </math><math>\left. 4{\delta }^2f^{{'}2}\right)=0\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
|}
Here <math display="inline">A_2</math> and <math display="inline">A_3</math> are constants given by
<span id='e0050'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>A_2=(1-\phi )+\phi \frac{{\left(\rho C_p\right)}_s}{{\left(\rho C_p\right)}_f}\mbox{,}\quad A_3=</math><math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+2\phi (k_f-k_s)}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
|}
With these boundary conditions:
<span id='e0055'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>f(0)=0\mbox{,}\quad f^{{''}}(0)=0\mbox{,}</math>
|-
|<math>f(1)=1\mbox{,}\quad f^{{'}}(1)=0\mbox{,}</math>
|-
|<math>{\theta }^{{'}}(0)=0\mbox{,}\quad \theta (1)=1\mbox{.}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
|}
where ''S'' is the squeeze number, ''Pr'' is the Prandtl number and ''Ec'' is the Eckert number, which are defined as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>S=\frac{\alpha l^2}{2{\upsilon }_f}\mbox{,}\quad Pr=</math><math>\frac{{\mu }_f{\left(\rho C_p\right)}_f}{{\rho }_fk_f}\mbox{,}\quad Ec=</math><math>\frac{{\rho }_f}{{\left(\rho C_p\right)}_f}{\left(\frac{\alpha x}{2\left(1-\alpha t\right)}\right)}^2\mbox{,}\quad \delta =</math><math>\frac{l}{x}\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
|}
<span id='f0005'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr1.jpg|center|348px|Schematic of the two cases of problems with coupled nonlinear equations in ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 1.
Schematic of the two cases of problems with coupled nonlinear equations in fluids mechanic.
</span>
|}
===2.2. Case 2===
The second case ([[#f0005|Fig. 1]], right) consists of two vertical flat plates separated by a distance of 2''b ''. A non-Newtonian fluid flows between them due to natural convection. The walls at <math display="inline">x=+b</math> and <math display="inline">x=-b</math> are held at constant temperatures <math display="inline">T_2</math> and <math display="inline">T_1</math>, respectively, where <math display="inline">T_1>T_2</math>. This difference in temperature causes the fluid near the wall at <math display="inline">x=-b</math> to rise and the fluid near the wall at <math display="inline">x=+b</math> to fall. The fluid is a non-Newtonian Sodium Alginate (SA) based nanofluid containing Cu and Ag nanoparticles. It is assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. The effective density <math display="inline">{\rho }_{nf}</math>, the effective dynamic viscosity <math display="inline">{\mu }_{nf}</math>, the heat capacitance <math display="inline">{\left(\rho C_p\right)}_{nf}</math> and the thermal conductivity <math display="inline">k_{nf}</math> of the nanofluid are given as follows [[#b0035|[7]]]:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\rho }_{nf}={\rho }_f(1-\phi )+{\rho }_s\phi </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\mu }_{nf}=\frac{{\mu }_f}{{\left(1-\phi \right)}^{2.5}}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>{\left(\rho C_p\right)}_{nf}={\left(\rho C_p\right)}_f(1-</math><math>\phi )+{\left(\rho C_p\right)}_s\phi </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\phi (k_f-k_s)}{k_s+2k_f+\phi (k_f-k_s)}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
|}
Here, <math display="inline">\phi </math> is the solid volume fraction. By definition following are the similarity variables:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>V=\frac{\upsilon }{V_0}\mbox{,}\quad X=\frac{x}{b}\mbox{,}\quad \theta =</math><math>\frac{T-T_m}{T_1-T_2}\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
|}
Under these assumptions and following the nanofluid model proposed by Maxwell–Garnett (MG) model [[#b0045|[9]]], the Navier–Stokes and energy equations can be reduced to the following pair of ordinary differential equations:
<span id='e0090'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\frac{d^2V}{{dX}^2}+6\delta {\left(1-\phi \right)}^{2.5}{\left(\frac{dV}{dX}\right)}^2\frac{d^2V}{{dX}^2}+</math><math>\theta =0\mbox{,}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
|}
<span id='e0095'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\frac{d^2\theta }{{dX}^2}+Ec\cdot Pr\cdot \left(\frac{{\left(1-\phi \right)}^{-2.5}}{A_1}\right){\left(\frac{dV}{dX}\right)}^2+</math><math>2\delta Ec\cdot Pr\cdot \left(\frac{1}{A_1}\right){\left(\frac{dV}{dX}\right)}^4=</math><math>0\mbox{.}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
|}
where Prandtl number (''Pr''), Eckert number (''Ec ''), dimensionless non-Newtonian viscosity (<math display="inline">\delta </math>) and <math display="inline">A_1</math> have the following forms:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>Ec=\frac{{\rho }_fV_0^2}{{\left(\rho C_p\right)}_f(T_1-T_2)}\mbox{,}\quad Pr=</math><math>\frac{{\mu }_f{\left(\rho C_p\right)}_f}{{\rho }_fk_f}\mbox{,}\quad \delta =</math><math>\frac{6{\beta }_3V_0^2}{{\mu }_fb^2}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>A_1=\frac{k_{nf}}{k_f}=\frac{k_s+2k_f-2\varphi (k_f-k_s)}{k_s+2k_f+2\varphi (k_f-k_s)}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
|}
The appropriate boundary conditions are as follows:
<span id='e0110'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>X=-1:V=0\mbox{,}\quad \theta =0.5</math>
|-
|<math>X=+1:V=0\mbox{,}\quad \theta =-0.5</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
|}
==3. Principle of analytical methods==
===3.1. Differential Transformation Method (DTM)===
For understanding the concept of DTM, we suppose that <math display="inline">x(t)</math> is an analytic function in domain ''D '', and <math display="inline">t=t_i</math> represents any point in the domain. The function <math display="inline">x(t)</math> is then represented by one power series whose center is located at <math display="inline">t_i</math>. The Taylor series expansion function of <math display="inline">x(t)</math> is in form of
<span id='e0115'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>x(t)=\sum_{k=0}^{\infty }\frac{{\left(t-t_i\right)}^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=t_i}\quad \forall t\in D</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
|}
The Maclaurin series of <math display="inline">x(t)</math> can be obtained by taking <math display="inline">t_i=0</math> in Eq. [[#e0115|(23)]] as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>x(t)=\sum_{k=0}^{\infty }\frac{t^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=0}\quad \forall t\in D</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
|}
As explained in Ref. [[#b0050|[10]]], the differential transformation of the function <math display="inline">x(t)</math> is defined as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>X(k)=\sum_{k=0}^{\infty }\frac{H^k}{k!}{\left[\frac{d^kx(t)}{{dt}^k}\right]}_{t=0}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
|}
where <math display="inline">X(k)</math> represents the transformed function and <math display="inline">x(t)</math> is the original function. The differential spectrum of <math display="inline">X(k)</math> is confined within the interval <math display="inline">t\in [0\mbox{,}H]</math>, where ''H'' is a constant value and it can be assumed as unity in common DTM, but for multi-step DTM it should be considered as the length of ''t '' steps. When <math display="inline">H\rightarrow \infty </math> the methods no longer work and Pade approximation should be applied. More information about ''H'' can be found in Ref. [[#b0100|[20]]]. The differential inverse transform of <math display="inline">X(k)</math> is defined as follows:
<span id='e0130'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>x(t)=\sum_{k=0}^{\infty }{\left(\frac{t}{H}\right)}^kX(k)</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
|}
It is clear that the concept of differential transformation is based upon the Taylor series expansion. The values of function <math display="inline">X(k)</math> at values of argument ''k '' are referred to as discrete, i.e. <math display="inline">X(0)</math> is known as the zero discrete, <math display="inline">X(1)</math> as the first discrete, etc. The more the discrete available, the more precise it is possible to restore the unknown function. The function <math display="inline">x(t)</math> consists of the ''T ''-function <math display="inline">X(k)</math>, and its value is given by the sum of the ''T ''-function with <math display="inline">(t/H)k</math> as its coefficient. In real applications, with the right choice of constant ''H'', the larger values of argument ''k '' will lead to rapid reduction of the discrete of spectrum. The function <math display="inline">x(t)</math> is expressed by a finite series and Eq. [[#e0130|(26)]] can be written as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>x(t)=\sum_{k=0}^n{\left(\frac{t}{H}\right)}^kX(k)</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
|}
where ''n'' is the number of statements of the DTM. Generally, by increasing ''n'', DTM accuracy will be increased, but it depends on ''H'' and time step’s length [[#b0100|[20]]]. Actually, ''H'' depends on the time steps which for classical DTM is considered unity, but for Multi step DTM or Ms-DTM it is equal to the time step value. Some important mathematical operations performed by differential transform method are listed in [[#t0005|Table 1]]. As described before, one of the most advantages of DTM is its independence of small parameter, linearization or perturbation. Also, it does not need to determine auxiliary function, auxiliary parameter or suitable initial guess against other analytical methods.
<span id='t0005'></span>
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
|+
Table 1.
Some fundamental operations of the differential transform method.
|-
! Origin function
! Transformed function
|-
| <math display="inline">x(t)=\alpha f(x)\pm \beta g(t)</math>
| <math display="inline">X(k)=\alpha F(k)\pm \beta G(k)</math>
|-
| <math display="inline">x(t)=\frac{d^mf(t)}{{dt}^m}</math>
| <math display="inline">X(k)=\frac{\left(k+m)!F(k+m\right)}{k!}</math>
|-
| <math display="inline">x(t)=f(t)g(t)</math>
| <math display="inline">X(k)={\sum }_{l=0}^kF(l)G(k-l)</math>
|-
| <math display="inline">x(t)=t^m</math>
| <math display="inline">X(k)=\delta (k-m)=\begin{array}{ll}
1\mbox{,} & \mbox{if}\quad k=m\\
0\mbox{,} & \mbox{if}\quad k\quad \not =\quad m\mbox{.}
\end{array}</math>
|-
| <math display="inline">x(t)=exp(t)</math>
| <math display="inline">X(k)=\frac{1}{k!}</math>
|-
| <math display="inline">x(t)=sin(\omega t+\alpha )</math>
| <math display="inline">X(k)=\frac{{\omega }^k}{k!}sin\left(\frac{k\pi }{2}+\right. </math><math>\left. \alpha \right)</math>
|-
| <math display="inline">x(t)=cos(\omega t+\alpha )</math>
| <math display="inline">X(k)=\frac{{\omega }^k}{k!}cos\left(\frac{k\pi }{2}+\right. </math><math>\left. \alpha \right)</math>
|}
==4. Application of analytical methods on the problem==
===4.1. Application of DTM on case 1===
Now Differential Transformation Method has been applied into the governing equations. Taking the differential transforms of Eqs. [[#e0040|(8)]], [[#e0045|(9)]] and [[#e0050|(10)]] with respect to <math display="inline">\chi </math> and considering ''H'' = 1 gives:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>(k+1)(k+2)(k+3)(k+4)F[k+4]+{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(\Delta [k-\right. </math><math>\left. m-1](m+1)(m+2)(m+3)F[m+3]\right)</math>
|-
|<math>\quad -3S(k+1)(k+2)F[k+2]-{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)F[k-m+1](m+1)(m+2)F[m+2]\right)</math>
|-
|<math>\quad +{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}\sum_{m=0}^k\left(F[k-\right. </math><math>\left. m](m+1)(m+2)(m+3)F[m+3]\right)=0\mbox{,}</math>
|-
|<math>\Delta [m]=\begin{array}{ll}
1 & m=1\\
0 & m\quad \not =\quad 1
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>F[0]=0\mbox{,}\quad F[1]=a_1\mbox{,}\quad F[2]=0\mbox{,}\quad F[3]=</math><math>a_2</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>(k+1)(k+2)\Theta [k+2]+Pr\cdot S\cdot \left(\frac{A_2}{A_3}\right)\sum_{m=0}^k\left(F[k-\right. </math><math>\left. m](m+1)\Theta [m+1]\right)</math>
|-
|<math>\quad -Pr\cdot S\cdot \left(\frac{A_2}{A_3}\right)\sum_{m=0}^k\left(\Delta [k-\right. </math><math>\left. m](m+1)\Theta [m+1]\right)</math>
|-
|<math>\quad +\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)\left(k-m+2\right)F[k-m+2](m+\right. </math><math>\left. 1)(m+2)F[m+2]\right)</math>
|-
|<math>\quad +4\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2\sum_{m=0}^k\left(\left(k-\right. \right. </math><math>\left. \left. m+1\right)F[k-m+1](m+1)F[m+1]\right)\mbox{,}</math>
|-
|<math>\Delta [m]=\begin{array}{ll}
1 & m=1\\
0 & m\quad \not =\quad 1
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\Theta [0]=a_3\mbox{,}\quad \Theta [1]=0</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
|}
where <math display="inline">F[k]</math> and <math display="inline">\Theta [k]</math> are the differential transforms of <math display="inline">f(\eta )\mbox{,}\theta (\eta )</math> and <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> are constants which can be obtained through boundary condition. This problem can be solved as follows:
<span id='e0160'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>F[0]=0\mbox{,}\quad F[1]=a_1\mbox{,}\quad F[2]=0\mbox{,}\quad F[3]=</math><math>a_2\mbox{,}\quad F[4]=0</math>
|-
|<math>F[5]=\frac{3}{20}S\quad A_1{\left(1-\phi \right)}^{2.5}a_2+</math><math>\frac{1}{20}S\quad A_1{\left(1-\phi \right)}^{2.5}a_1a_2+</math><math>\frac{1}{20}a_1a_2\mbox{,}\ldots </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
|}
<span id='e0165'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\Theta [0]=a_3\mbox{,}\quad \Theta [1]=0\mbox{,}\quad \Theta [2]=</math><math>-2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2a_1^2\mbox{,}</math>
|-
|<math>\Theta [3]=0\mbox{,}</math>
|-
|<math>\Theta [4]=\frac{1}{3}\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}Pr\quad S\left(\frac{A_2}{A_3}\right)a_1^3{\delta }^2-</math><math>3\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_2^2-</math><math>2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_1a_2\mbox{,}</math>
|-
|<math>\Theta [5]=0\mbox{,}\ldots </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
|}
The above process is continuous. By substituting Eqs. [[#e0160|(32)]] and [[#e0165|(33)]] into the main equation based on DTM, it can be obtained that the closed form of the solutions is as follows:
<span id='e0170'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>F(\eta )=a_1\eta +a_2{\eta }^3+\left(\frac{3}{20}{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}a_2+\right. </math><math>\left. \frac{1}{20}{\mbox{SA}}_1{\left(1-\phi \right)}^{2.5}a_1a_2+\right. </math><math>\left. \frac{1}{20}a_1a_2\right){\eta }^4+\cdots </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
|}
<span id='e0175'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\theta (\eta )=a_3+\left(-2\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}{\delta }^2a_1^2\right){\eta }^2+</math><math>\left(\frac{1}{3}a_1^3\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}Pr\quad S\left(\frac{A_2}{A_3}\right){\delta }^2-\right. </math><math>\left. 3Pr\quad Ec\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_2^2-\right. </math><math>\left. 2Pr\quad Ec\frac{Pr\quad Ec}{A_3{\left(1-\phi \right)}^{2.5}}a_1a_2\right){\eta }^4+</math><math>\cdots </math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
|}
by substituting the boundary condition from Eq. [[#e0055|(11)]] into Eqs. [[#e0170|(34)]] and [[#e0175|(35)]] in point <math display="inline">\eta =1</math> the values of <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> can be obtained. By substituting obtained <math display="inline">a_1\mbox{,}a_2\mbox{,}a_3</math> into Eqs. [[#e0170|(34)]] and [[#e0175|(35)]], the expression of <math display="inline">F(\eta )</math> and <math display="inline">\Theta (\eta )</math> can be obtained. For example for Cu–water nanofluid when ''Pr'' = 6.2, ''Ec'' = 0.05, <math display="inline">\delta =0.1</math>, ''S'' = 0.1 and <math display="inline">\varphi =0.01</math> following equations will be obtained:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>f(\eta )=1.4870\eta -0.47373{\eta }^3-0.01368{\eta }^5+</math><math>0.0001428{\eta }^6+0.0002479{\eta }^7-3.174\times {10}^{-7}{\eta }^8</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
|}
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\theta (\eta )=1.227-0.0135{\eta }^2-0.20073{\eta }^4-</math><math>0.00935{\eta }^6+0.000176{\eta }^7-0.00374{\eta }^8\mbox{.}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
|}
===4.2. Application of DTM on case 2===
Similarly, DTM is applied to Eqs. [[#e0090|(18)]] and [[#e0095|(19)]]. Their transformed form will be as follows:
<span id='e0190'></span>
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\begin{array}{l}
6\delta {\left(1-\phi \right)}^{2.5}\left(\sum_{l=0}^k\left(\sum_{m=0}^l(k+1-l)(k+2-l)\overline{V}(k+2-l)(l+1-m)\overline{V}(l+1-m)(l+1)\overline{V}(l+1)\right)\right)\\
\quad +(k+1)(k+2)\overline{V}(k+2)+\Theta (k)=0\\
2\cdot \delta \cdot E\cdot Pr\cdot \left(\frac{1}{A_1}\right)\cdot \left(\sum_{l=0}^k\left(\sum_{m=0}^l\left(\sum_{n=0}^m(k+1-l)\overline{V}(k+1-l)(l+1)\overline{V}(l+1)(l+1-m)\overline{V}(l+1-m)(m-n+1)\overline{V}(m-n+1)\right)\right)\right)\\
\quad +E\cdot Pr\cdot \left(\frac{{\left(1-\phi \right)}^{-2.5}}{A_1}\right)\cdot \left(\sum_{l=0}^k(l+1)\overline{V}(l+1)(k+1-l)\overline{V}(k+1-l)\right)+(k+1)(k+2)\Theta (k+2)=0
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
|}
The boundary conditions can be written as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\begin{array}{ll}
\overline{V}(0)=a\mbox{,} & \overline{V}(1)=b\mbox{,}\\
\Theta (0)=c\mbox{,} & \Theta (1)=d\mbox{.}
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
|}
In ''i''th step, by solving the set of coupled Eq. [[#e0190|(38)]], <math display="inline">\overline{V}(i+2)</math> and <math display="inline">\Theta (i+2)</math> can be determined. For example using boundary condition and Eq. [[#e0110|(22)]] second terms will be
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\begin{array}{l}
\overline{V}(2)=-\frac{1}{2}\frac{c}{1+6\cdot \delta \cdot \sqrt{1-\phi }\cdot b^2-12\delta \sqrt{1-\phi }\cdot b^2\cdot \phi +6\cdot \delta \sqrt{1-\phi }\cdot b^2\cdot {\phi }^2}\\
\Theta (2)=-\frac{1}{2}\cdot Ec\cdot Pr\cdot b^2\left(\frac{\left(1+2\cdot \delta \cdot \sqrt{1-\phi }\cdot b^2-4\delta \sqrt{1-\phi }\cdot b^2\cdot \phi +2\delta \sqrt{1-\phi }\cdot b^2\cdot {\phi }^2\right)}{\sqrt{1-\phi }\cdot A\cdot (1-2\phi +{\phi }^2)}\right)
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
|}
where <math display="inline">\Theta </math> and <math display="inline">\overline{V}</math> represent the DTM transformed form of <math display="inline">\theta </math> and ''V '' respectively and <math display="inline">a\mbox{,}b\mbox{,}c</math> and ''d '' are unknown coefficients that after specifying <math display="inline">\theta (X)</math> and <math display="inline">V(X)</math> and applying boundary condition (Eq. [[#e0110|(22)]]) into it, will be determined. For example when <math display="inline">Pr=\delta =Ec=1</math> and <math display="inline">\varphi =0.01</math> for Cu–SA following values were determined for <math display="inline">a\mbox{,}b\mbox{,}c</math> and ''d'' coefficients.
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>a=0.001549699393\mbox{,}\quad b=-0.08029165346\mbox{,}</math>
|-
|<math>c=0.003216310358\mbox{,}\quad d=-0.4999171902</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
|}
Finally, <math display="inline">\theta (X)</math> and <math display="inline">V(X)</math> when <math display="inline">Pr=\delta =Ec=1</math> and <math display="inline">\varphi =0.01</math> can be defined as follows:
{| class="formulaSCP" style="width: 100%; text-align: center;"
|-
|
{| style="text-align: center; margin:auto;"
|-
| <math>\begin{array}{l}
V(X)=0.001549699393-0.08029165346X-0.001549699394X^2+0.08029165350X^3\\
\theta (X)=0.003216310358-0.4999171902X-0.003216310358X^2-0.000082809826X^3
\end{array}</math>
|}
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
|}
As seen in terms of above equation, although for increasing the accuracy, the number of statements has been increased, convergence of DTM is completely evident.
==5. Results and discussion==
As has been discussed, Newtonian and non-Newtonian nanofluids can be found in many industrial applications [[#b0105|[21]]], [[#b0110|[22]]], [[#b0115|[23]]], [[#b0120|[24]]], [[#b0125|[25]]], [[#b0130|[26]]], [[#b0135|[27]]] and [[#b0140|[28]]]. Their analysis and treatment can be performed by well-known analytical and numerical methods. Some of these methods have been employed for solving the engineering problems [[#b0145|[29]]], [[#b0150|[30]]], [[#b0155|[31]]] and [[#b0160|[32]]]. In our study, efficiency of DTM for solving these kinds of problems is examined through two different problems as introduced in the previous sections. Our DTM solutions will be compared to numerical solution presented in the literature [[#b0095|[19]]]. As mentioned before, in first case, heat transfer and nanofluid flow analysis in the unsteady squeezing nanofluids between parallel plates are studied using Differential Transformation Method (DTM) and results are compared with forth-order Runge–Kutta numerical method. [[#f0010|Fig. 2]] shows the results of DTM for solving the Eqs. [[#e0040|(8)]] and [[#e0045|(9)]] in different Eckert and squeeze numbers. As seen in these figures, DTM has a good agreement with numerical method in wide range of ''Ec'' and ''S'' numbers. Effect of Nanoparticles volume fraction on velocity and temperature profiles is shown in [[#f0015|Fig. 3]]. Adding nanoparticles into the base fluid leads to increase in thermal boundary layer thickness while it has no significant effect on velocity boundary layer thickness. It is obvious that when nanoparticles were added into base fluid, heat transfer will increase due to their high thermal conductivity, and so temperature profiles will be decreased.
<span id='f0010'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr2.jpg|center|px|Comparison of DTM and numerical results for (a) θ(η) when Pr=6.2, S=0.1, δ=0.1, ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 2.
Comparison of DTM and numerical results for (a) <math display="inline">\theta (\eta )</math> when ''Pr'' = 6.2, ''S'' = 0.1, <math display="inline">\delta =0.1</math>, <math display="inline">\varphi =0.01</math> and (b) <math display="inline">f(\eta )</math> when ''Pr'' = 6.2, ''Ec'' = 0.05, <math display="inline">\delta =0.1</math>, <math display="inline">\varphi =0.01</math>.
</span>
|}
<span id='f0015'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr3.jpg|center|px|Effect of nanoparticles volume fraction (φ) on (a) temperature profile and (b) ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 3.
Effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on (a) temperature profile and (b) velocity profile when ''Pr'' = 6.2, ''Ec'' = 0.5, <math display="inline">\delta =0.1</math>, ''S'' = 1.0.
</span>
|}
For the second case, the base fluid is considered as a non-Newtonian fluid containing sodium alginate (SA) and two types of nanoparticles namely silver (Ag) and copper (Cu) are added. For showing the efficiency of analytical applied method (DTM), [[#t0010|Table 2]] and [[#t0015|Table 3]] presented values and errors for Ag–SA, respectively. These tables also confirm the accuracy of DTM for solving such kinds of problems. The effect of <math display="inline">\delta </math> number on non-dimensional velocity and temperature of the nanofluid is investigated through [[#f0020|Fig. 4]](a) and (b). These figures confirm that <math display="inline">\delta </math> has no effect on temperature variations but it reduces velocity values. The same phenomenon was also observed by Ziabakhsh and Domairry [[#b0045|[9]]]. [[#f0025|Fig. 5]] confirms that when nanoparticles volume fraction increases, velocity profiles increase but temperature values decrease due to increase in heat transfer. [[#f0025|Fig. 5]] shows the effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on velocity profile and temperature distribution for SA–TiO<sub>2</sub> nanofluid when <math display="inline">Ec=\delta =1</math>, while [[#f0030|Fig. 6]] depictesthe effect of volume fraction of copper nanoparticles.
<span id='t0010'></span>
Table 2.
Velocity and temperature profile values by applied methods for Ag–SA nanofluid profiles when <math display="inline">Pr=Ec=\delta =1</math>, <math display="inline">\phi =0.01</math>.
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
|-
! rowspan="2" | ''X''
! colspan="2" | ''V''(''X'')
! colspan="2" | <math display="inline">\theta </math>(''X'')
|-
! Numerical
! DTM
! Numerical
! DTM
|-
| −1.0
| 0.00
| 2 × 10<sup>−11</sup>
| 0.50
| 0.50
|-
| 0.45059686
| −0.9
| 0.013888702
| 0.01402428
| 0.45043148
|-
| −0.8
| 0.023620556
| 0.02368182
| 0.40071897
| 0.40113389
|-
| −0.7
| 0.029489465
| 0.02945437
| 0.35094362
| 0.35161056
|-
| −0.6
| 0.031888322
| 0.03182368
| 0.30114965
| 0.30202640
|-
| −0.5
| 0.031279886
| 0.03127150
| 0.25135346
| 0.25238090
|-
| −0.4
| 0.028164333
| 0.02827959
| 0.20155266
| 0.20267356
|-
| −0.3
| 0.023053394
| 0.02332968
| 0.15173412
| 0.15290389
|-
| −0.2
| 0.016454874
| 0.01690353
| 0.10188071
| 0.10307139
|-
| −0.1
| 0.008866496
| 0.00948289
| 0.05197647
| 0.05317557
|-
| 0.0
| 0.000776279
| 0.00154951
| 0.002010267
| 0.00321593
|-
| 0.1
| −0.007333249
| −0.00641485
| −0.04802206
| −0.04680801
|-
| 0.2
| −0.014979179
| −0.01392846
| −0.09811697
| −0.09689681
|-
| 0.3
| −0.021672314
| −0.02050956
| −0.14826378
| −0.14705093
|-
| 0.4
| −0.026912911
| −0.02567640
| −0.19844679
| −0.19727080
|-
| 0.5
| −0.030190188
| −0.02894723
| −0.24864875
| −0.24755700
|-
| 0.6
| −0.030988255
| −0.02984030
| −0.29885599
| −0.29791001
|-
| 0.7
| −0.028801308
| −0.02787389
| −0.34906512
| −0.34833031
|-
| 0.8
| −0.023159274
| −0.02256617
| −0.39929111
| −0.39881842
|-
| 0.9
| −0.013660270
| −0.01343546
| −0.44957637
| −0.44937485
|-
| 1.0
| 0.00
| −2 × 10<sup>−11</sup>
| −0.50
| −0.50
|}
<span id='t0015'></span>
{| class="wikitable" style="min-width: 60%;margin-left: auto; margin-right: auto;"
|+
Table 3.
Errors (%) of applied methods obtained from [[#t0010|Table 2]]’s data compared by numerical method.
|-
! rowspan="2" | ''X''
! ''V''(''X'')
! <math display="inline">\theta </math>(''X'')
|-
! DTM
! DTM
|-
| −1.0
| 0.00
| 0.00
|-
| −0.9
| 0.00976
| 0.00037
|-
| −0.8
| 0.00259
| 0.00104
|-
| −0.7
| 0.00119
| 0.0019
|-
| −0.6
| 0.002027
| 0.00291
|-
| −0.5
| 0.000268
| 0.00409
|-
| −0.4
| 0.00409
| 0.00556
|-
| −0.3
| 0.01198
| 0.00771
|-
| −0.2
| 0.02727
| 0.01169
|-
| −0.1
| 0.06952
| 0.02307
|-
| 0.0
| 0.99607
| 0.59975
|-
| 0.1
| 0.125238
| 0.025281
|-
| 0.2
| 0.070145
| 0.012436
|-
| 0.3
| 0.053652
| 0.00818
|-
| 0.4
| 0.045945
| 0.005926
|-
| 0.5
| 0.041171
| 0.004391
|-
| 0.6
| 0.037045
| 0.003165
|-
| 0.7
| 0.032201
| 0.002105
|-
| 0.8
| 0.02561
| 0.001184
|-
| 0.9
| 0.016457
| 0.000448
|-
| 1.0
| 0.00
| 0.00
|}
<span id='f0020'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr4.jpg|center|px|Effect of δ number on (a) velocity profile (V(X)) and (b) temperature profile ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 4.
Effect of <math display="inline">\delta </math> number on (a) velocity profile (''V''(''X '')) and (b) temperature profile (<math display="inline">\theta </math>(''X '')) for Cu–SA nanofluid when <math display="inline">Pr=Ec=0.5</math>, <math display="inline">\phi =0.05</math>.
</span>
|}
<span id='f0025'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr5.jpg|center|px|Effect of nanoparticles volume fraction (φ) on (a) velocity profile (V(X)) and ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 5.
Effect of nanoparticles volume fraction (<math display="inline">\varphi </math>) on (a) velocity profile (''V''(''X '')) and (b) temperature distribution (<math display="inline">\theta </math>(''X'')) for SA–TiO<sub>2</sub> nanofluid when <math display="inline">Ec=\delta =1</math>.
</span>
|}
<span id='f0030'></span>
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; max-width: 100%;"
|-
|
[[Image:draft_Content_204239985-1-s2.0-S1110016816000077-gr6.jpg|center|px|Effect of nanoparticles volume fraction on (a) velocity profile (V(X)) and (b) ...]]
|-
| <span style="text-align: center; font-size: 75%;">
Fig. 6.
Effect of nanoparticles volume fraction on (a) velocity profile (''V''(''X '')) and (b) temperature profile (<math display="inline">\theta (X)</math>) for Cu–SA nanofluid when <math display="inline">Pr=Ec=\delta =0.5</math>.
</span>
|}
==6. Conclusion==
In present work, Differential Transformation Method (DTM) is applied for solving the coupled nonlinear differential equations in fluids mechanic to show the validity and simplicity of this method. For this aim, two cases of problems in nanofluid mechanics which have coupled nonlinear differential equations were selected and DTM was applied on them. For illustrating the accuracy of described method, a numerical method was also used to solve the problems. A very good agreement between these two methods was observed in both problems. Compared to previous works, DTM has a better agreement with numerical method compared to other analytical and perturbation methods. This DTM accuracy is due to independency to small parameter (''p'') compared to perturbation methods and direct solving of the equation without linearization or discretization.
==Acknowledgments==
D. Jing gratefully acknowledges the financial support from the National Natural Science Foundation of China (Nos. [[#gp005|51422604]] and [[#gp005|21276206]]) and China Fundamental Research Funds for the Central Universities.
==References==
<ol style='list-style-type: none;margin-left: 0px;'><li><span id='b0005'></span>
[[#b0005|[1]]] S.A. Atouei, K. Hosseinzadeh, M. Hatami; Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods; Appl. Therm. Eng., 89 (2015), pp. 299–305</li>
<li><span id='b0010'></span>
[[#b0010|[2]]] M. Hatami, G.R.M. Ahangar, D.D. Ganji; Refrigeration efficiency analysis for fully wet semi-spherical porous fins; Energy Convers. Manage., 84 (84) (2014), pp. 533–540</li>
<li><span id='b0015'></span>
[[#b0015|[3]]] M. Hatami, D.D. Ganji; Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si<sub>3</sub>N<sub>4</sub>); Ceram. Int., 40 (2014), pp. 6765–6775</li>
<li><span id='b0020'></span>
[[#b0020|[4]]] M. Hatami, D.D. Ganji; Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method; Powder Technol., 258 (2014), pp. 94–98</li>
<li><span id='b0025'></span>
[[#b0025|[5]]] M. Hatami, D.D. Ganji; Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods; Case Stud. Thermal Eng. (2014)</li>
<li><span id='b0030'></span>
[[#b0030|[6]]] A. Ahmadi, Kh. Hosseinzadeh, M. Hatami, D.D. Ganji; A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate; Powder Technol. (2014)</li>
<li><span id='b0035'></span>
[[#b0035|[7]]] G. Domairry, M. Hatami; Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method; J. Mole. Liq. (2014)</li>
<li><span id='b0040'></span>
[[#b0040|[8]]] M. Hatami, D.D. Ganji; Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation; Case Stud. Thermal Eng. (2014)</li>
<li><span id='b0045'></span>
[[#b0045|[9]]] Z. Ziabakhsh, G. Domairry; Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method; Commun. Nonlinear Sci. Numer. Simul., 14 (2009), pp. 1868–1880</li>
<li><span id='b0050'></span>
[[#b0050|[10]]] J.K. Zhou; Differential Transformation Method and its Application for Electrical Circuits; Hauzhang University Press, Wuhan, China (1986)</li>
<li><span id='b0055'></span>
[[#b0055|[11]]] S. Ghafoori, M. Motevalli, M.G. Nejad, F. Shakeri, D.D. Ganji, M. Jalaal; Efficiency of differential transformation method for nonlinear oscillation: comparison with HPM and VIM; Curr. Appl. Phys., 11 (2011), pp. 965–971</li>
<li><span id='b0060'></span>
[[#b0060|[12]]] H. Yahyazadeh, D.D. Ganji, A. Yahyazadeh, M. Taghi Khalili, P. Jalili, M. Jouya; Evaluation of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field by the differential transformation method; Therm. Sci., 16 (5) (2012), pp. 1281–1287</li>
<li><span id='b0065'></span>
[[#b0065|[13]]] J. Biazar, M. Eslami; Differential transform method for quadratic Riccati differential equation; Int. J. Nonlinear Sci., 9 (4) (2010), pp. 444–447</li>
<li><span id='b0070'></span>
[[#b0070|[14]]] A. Gokdogan, M. Merdan, A. Yildirim; The modified algorithm for the differential transform method to solution of Genesio systems; Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 45–51</li>
<li><span id='b0075'></span>
[[#b0075|[15]]] F. Ayaz; On the two-dimensional differential transform method; Appl. Math. Comput., 143 (2003), pp. 361–374</li>
<li><span id='b0080'></span>
[[#b0080|[16]]] Q. Ni, Z.L. Zhang, L. Wang; Application of the differential transformation method to vibration analysis of pipes conveying fluid; Appl. Math. Comput., 217 (2011), pp. 7028–7038</li>
<li><span id='b0085'></span>
[[#b0085|[17]]] D.D. Ganji, S.H. Hashemi Kachapi; Progress in Nonlinear Science: Analysis of Nonlinear Equations in Fluids; Asian Academic Publisher Limited, Hong Kong, China (2011)</li>
<li><span id='b0090'></span>
[[#b0090|[18]]] M. Hatami, D.D. Ganji; Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods; Case Stud. Thermal Eng., 2 (2014), pp. 14–22</li>
<li><span id='b0095'></span>
[[#b0095|[19]]] K.R. Rajagopal, T.Y. Na; Natural convection flow of a non-Newtonian fluid between two vertical flat plates; Acta Mech., 54 (1985), pp. 39–46</li>
<li><span id='b0100'></span>
[[#b0100|[20]]] C. Bervillier; Status of the differential transformation method; Appl. Math. Comput., 218 (2012), pp. 10158–10170</li>
<li><span id='b0105'></span>
[[#b0105|[21]]] M. Hatami, D.D. Ganji; Heat transfer and flow analysis for SA–TiO<sub>2</sub> non-Newtonian nanofluid passing through the porous media between two coaxial cylinders; J. Mole. Liq., 188 (2013), pp. 155–161</li>
<li><span id='b0110'></span>
[[#b0110|[22]]] M. Hatami, J. Hatami, D.D. Ganji; Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel; Comput. Meth. Prog. Biomed., 113 (2) (2014), pp. 632–641</li>
<li><span id='b0115'></span>
[[#b0115|[23]]] G. Domairry, M. Hatami; Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method; J. Mole. Liq. (2014)</li>
<li><span id='b0120'></span>
[[#b0120|[24]]] M. Hatami, D.D. Ganji; Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method; Energy Convers. Manage., 78 (2014), pp. 347–358</li>
<li><span id='b0125'></span>
[[#b0125|[25]]] M. Hatami, R. Nouri, D.D. Ganji; Forced convection analysis for MHD Al<sub>2</sub>O<sub>3</sub>–water nanofluid flow over a horizontal plate; J. Mole. Liq., 187 (2013), pp. 294–301</li>
<li><span id='b0130'></span>
[[#b0130|[26]]] M. Sheikholeslami, M. Hatami, D.D. Ganji; Analytical investigation of MHD nanofluid flow in a semi-porous channel; Powder Technol., 246 (2013), pp. 327–336</li>
<li><span id='b0135'></span>
[[#b0135|[27]]] M. Sheikholeslami, M. Hatami, D.D. Ganji; Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field; J. Mole. Liq., 190 (2013), pp. 112–120</li>
<li><span id='b0140'></span>
[[#b0140|[28]]] M. Hatami, M. Sheikholeslami, D.D. Ganji; Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method; Powder Technol., 253 (2014), pp. 769–779</li>
<li><span id='b0145'></span>
[[#b0145|[29]]] M. Hatami, D.D. Ganji; Thermal performance of circular convective–radiative porous fins with different section shapes and materials; Energy Convers. Manage., 76 (2013), pp. 185–193</li>
<li><span id='b0150'></span>
[[#b0150|[30]]] M. Hatami, A. Hasanpour, D.D. Ganji; Heat transfer study through porous fins (Si<sub>3</sub>N<sub>4</sub> and AL) with temperature-dependent heat generation; Energy Convers. Manage., 74 (2013), pp. 9–16</li>
<li><span id='b0155'></span>
[[#b0155|[31]]] M. Hatami, D.D. Ganji; Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis; Int. J. Refrig. (2013) [http://dx.doi.org/10.1016/j.ijrefrig.2013.11.002 http://dx.doi.org/10.1016/j.ijrefrig.2013.11.002]</li>
<li><span id='b0160'></span>
[[#b0160|[32]]] M. Hatami, G. Domairry; Transient vertically motion of a soluble particle in a Newtonian fluid media; Powder Technol., 253 (2014), pp. 481–485</li>
</ol>
Return to Hatami Jing 2016a.
Published on 12/04/17
Licence: Other
Are you one of the authors of this document?