You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Reliable iterative techniques for solving the KS equation arising in fluid flow ==
3
-->
4
5
==Abstract==
6
7
In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide <math>\omega _{n}</math>-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.
8
9
'''Keywords:''' Kuramoto-Sivashinsky equation; Laplace transform; Natural decomposition method (NDM); Temimi-Ansari method (TAM).
10
11
==1 Introduction==
12
13
Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.
14
15
Gregory I. Sivashinsky measured the situation of a laminar flaming front in 1977. When Yoshiki Kuramoto simultaneously designed diffusion-induced chaos in a three-dimensional simulation of the Belousov-Zabotinskii transformation [10-13], he created a certain problem. The result of their collaboration is known as the Kuramoto-Sivashinsky (KS) model. This system describes the variations in the orientation of the combustion front, the flow of a liquid down a circular surface, and a dynamically specific oscillating of chemical compounds in a fluid that is homogeneous [14-16]. It creates chaotic behavior and necessitates a result resembling waves traveling in a finite space domain without changing scale. That has numerous implementations in a variety of concepts, such as response diffusion systems [17], thin film hydrodynamics [18], and front burn instability [19], as well as lengthy waves on functionality in a few noxious fluids [20].
16
17
The general Kuramoto-Sivashinsky equation (fractional Kuramoto-Sivashisky equation) is:
18
19
{| class="formulaSCP" style="width: 100%; text-align: left;" 
20
|-
21
| 
22
{| style="text-align: left; margin:auto;width: 100%;" 
23
|-
24
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega{+\omega}\frac{\partial \omega }{\partial \vartheta }+\alpha \frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\gamma \frac{\partial ^{3}\omega }{\partial \vartheta ^{3}}+\eta \frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0,\quad 0<\mu \leq{1},\quad \vartheta \in [a,b],\quad \iota{>0.} </math>
25
|}
26
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
27
|}
28
29
When <math display="inline">\alpha =\eta=1</math> and <math display="inline">\gamma=0</math>, the equation proceeds to the Kuramoto-Sivashinsky equation [9], which was developed by Kuramoto and Sivashinsky during their investigation of phase turbulence in the Belousov-Zhabotinsky reaction. The Kuramoto-Sivashinsky equation is a fourth-order nonlinear partial differential equation that plays a significant role in the study of fluid dynamics, combustion, and other areas of physics and mathematics.
30
31
Due to its wide range of applications, it has garnered a great deal of interest in the search for analytical and numerical solutions. Thus, the solutions of the KS equation have been accomplished through a variety of techniques, such as the finite difference method [21-22], the Exponential Cubic BSpline Collocation Method [23], the Subequation Method [24], the Adomian Decomposition Method [25-26], the Double Reduction Theory [27], the Modified Kudrayshov Method [28], the Expfunction Method [29], the q-homotopy analysis transform method [30], the homotopy analysis method [31-32], a semianalytical method [33], the Reduced Differential Transform Method [34], and numerous other techniques.
32
33
In this current research, two methods for solving the fractional Kuramoto-Sivashisky equation were implemented. The first method is a semi-analytical iterative method. Temimi and Ansari have proposed this method, namely the TAM. They have lately presented this method to solve linear and nonlinear ODEs and PDEs [35-36]. Recent applications of this iterative method have yielded exact and approximate solutions to several problems. As opposed to the VIM, the TAM doesn't require any restricted hypotheses for non-linear terms, such as the ADM, the prerequisite for the referred to as Adomian polynomial, thereby averting extensive computational work and requiring no additional parameters. In addition, it avoided homotopy construction and the solution of the corresponding equations for algebra, as in HPM.  
34
35
The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.
36
37
==2 Preliminaries to FC==
38
39
Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39]
40
41
===Definition 1===
42
43
The Riemann-Liouville integral of a function <math display="inline">f(\iota )\in C_{\delta }(\delta \geq{-1)}</math> having fractional order <math display="inline">(\sigma{>0)}</math> is presented as follows
44
45
{| class="formulaSCP" style="width: 100%; text-align: left;" 
46
|-
47
| 
48
{| style="text-align: left; margin:auto;width: 100%;" 
49
|-
50
| style="text-align: center;" | <math>J^{\sigma }f(\iota )=\frac{1}{\Gamma (\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{\sigma{-1}}f(\upsilon )d\upsilon{.} </math>
51
|}
52
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
53
|}
54
55
===Definition 2 ===
56
57
The Caputo fractional order derivative of <math display="inline">f\in C_{-1}^{n}</math> is presented as
58
59
{| class="formulaSCP" style="width: 100%; text-align: left;" 
60
|-
61
| 
62
{| style="text-align: left; margin:auto;width: 100%;" 
63
|-
64
| style="text-align: center;" | <math>D_{\iota }^{\sigma }=\begin{cases}\frac{d^{n}f(\iota )}{d\iota ^{n}},\left(\sigma =n\in N\right),\\ \frac{1}{\Gamma (n-\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{(n-\sigma{-1)}}f^{(n)}(\upsilon )d\upsilon ,\left((n-1)<\sigma{<}n,n\in N\right.). \end{cases} </math>
65
|}
66
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
67
|}
68
69
===Definition 3===
70
71
The natural transform of <math display="inline">g(\iota )</math> is defined as [40-41]
72
73
{| class="formulaSCP" style="width: 100%; text-align: left;" 
74
|-
75
| 
76
{| style="text-align: left; margin:auto;width: 100%;" 
77
|-
78
| style="text-align: center;" | <math>N^{+}[g(\iota )]=Q(s,u)=\frac{1}{u}\int _{0}^{\infty}e ^{\frac{-s\iota }{u}}g(\iota )d(\iota );s,\iota{>0}, </math>
79
|}
80
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
81
|}
82
83
where <math display="inline">s</math> and <math display="inline">u</math> are the transform variables.
84
85
The inverse natural transform of a function is defined by
86
87
{| class="formulaSCP" style="width: 100%; text-align: left;" 
88
|-
89
| 
90
{| style="text-align: left; margin:auto;width: 100%;" 
91
|-
92
| style="text-align: center;" | <math>N^{-}[Q(s,u)]=g(\iota )=\frac{1}{2\pi i}\int _{p-i\infty}^{p+i\infty}e ^{\frac{-s\iota }{u}}Q(s,u)d(s), </math>
93
|}
94
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
95
|}
96
97
where <math display="inline">s</math> and <math display="inline">u</math> are the natural transform variables and <math display="inline">p</math> is a real constant and the integral is taken along <math display="inline">s=p</math> in the complex plane  <math display="inline">s=\vartheta{+}iy</math>.
98
99
===Definition 4===
100
101
Natural Transform of nth derivative If <math display="inline">g^{(n)}(\iota )</math> is the nth derivative of function <math display="inline">g(\iota )</math> is given by,
102
103
{| class="formulaSCP" style="width: 100%; text-align: left;" 
104
|-
105
| 
106
{| style="text-align: left; margin:auto;width: 100%;" 
107
|-
108
| style="text-align: center;" | <math>N[g^{(n)}(\iota )]=Q_{n}(s,u)=\frac{s^{n}}{u^{n}}Q(s,u)-\sum _{k=0}^{n-1}\frac{s^{n-(k+1)}}{u^{n-k}}g^{(k)}(0),n\geq{1.} </math>
109
|}
110
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
111
|}
112
113
==3 The fundamental ideas of two iterative approaches==
114
115
An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.
116
117
===3.1 Basic Procedure for the fractional TAM ===
118
119
The general nonlinear fractional partial differential equation is a mathematical equation that may be used to represent the essential concepts of the suggested technique as
120
121
<span id="eq-7"></span>
122
{| class="formulaSCP" style="width: 100%; text-align: left;" 
123
|-
124
| 
125
{| style="text-align: left; margin:auto;width: 100%;" 
126
|-
127
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)+\Phi \left(\omega (\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\;n-1<\sigma \leq n, </math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
130
|}
131
132
combined with the independent variable <math display="inline">\vartheta </math>, dependent variable <math display="inline">\iota </math>, unknown function <math display="inline">\omega (\vartheta ,\iota )</math> and boundary conditions
133
134
{| class="formulaSCP" style="width: 100%; text-align: left;" 
135
|-
136
| 
137
{| style="text-align: left; margin:auto;width: 100%;" 
138
|-
139
| style="text-align: center;" | <math> \mathcal{B}\left(\omega ,\frac{\partial \omega }{\partial \vartheta }\right)=0, </math>
140
|}
141
|}
142
143
where <math display="inline">\Upsilon =D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math> is the Caputo fractional derivative, <math display="inline">\Phi </math> is representing the generic differential operators, the continuous functions are shown in <math display="inline">w(\vartheta ,\iota )</math> and the boundary operator is represented by <math display="inline">\mathcal{B}</math>. The main request made here is for the differential operator <math display="inline">\Upsilon </math> , which is general. However, if necessary, we can combine a number of linear components with nonlinear terms.
144
145
The following describes how the suggested method operates. The starting condition is obtained by removing the nonlinear portion as
146
147
{| class="formulaSCP" style="width: 100%; text-align: left;" 
148
|-
149
| 
150
{| style="text-align: left; margin:auto;width: 100%;" 
151
|-
152
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{0}\left(\vartheta ,\iota \right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{0},\frac{\partial \omega _{0}}{\partial \vartheta }\right)=0. </math>
153
|}
154
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
155
|}
156
157
By resolving the following issues, the next approximations of solutions are produced:
158
159
{| class="formulaSCP" style="width: 100%; text-align: left;" 
160
|-
161
| 
162
{| style="text-align: left; margin:auto;width: 100%;" 
163
|-
164
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{1},\frac{\partial \omega _{1}}{\partial \vartheta }\right)=0. </math>
165
|}
166
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
167
|}
168
169
As a result, we have a simple iterative process for solving a group of issues
170
171
<span id="eq-10"></span>
172
{| class="formulaSCP" style="width: 100%; text-align: left;" 
173
|-
174
| 
175
{| style="text-align: left; margin:auto;width: 100%;" 
176
|-
177
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{n+1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{n}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{n+1},\frac{\partial \omega _{n+1}}{\partial \vartheta }\right)=0. </math>
178
|}
179
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
180
|}
181
182
In this technique, it is crucial to remember that any of the <math display="inline">\omega _{n+1}\left(\vartheta ,\iota \right)</math> is individually a solution to the problem ([[#eq-7|7]]). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue ([[#eq-7|7]]) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as
183
184
<span id="eq-11"></span>
185
{| class="formulaSCP" style="width: 100%; text-align: left;" 
186
|-
187
| 
188
{| style="text-align: left; margin:auto;width: 100%;" 
189
|-
190
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptstyle {\scriptscriptstyle n\rightarrow \infty }}} {lim} \omega_{n} (\vartheta ,\iota{)}. </math>
191
|}
192
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
193
|}
194
195
===3.2 Basic Procedure for the fractional NDM===
196
197
The following examples demonstrate how the recommended approach is based on the theory and method for solving fractional nonlinear partial differential equations:
198
199
<span id="eq-12"></span>
200
{| class="formulaSCP" style="width: 100%; text-align: left;" 
201
|-
202
| 
203
{| style="text-align: left; margin:auto;width: 100%;" 
204
|-
205
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega \left(\vartheta ,\iota \right)+\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )  =  \hbar \left(\vartheta ,\iota \right),\;n-1<\sigma \leq n, </math>
206
|}
207
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
208
|}
209
210
with the initial condition
211
212
{| class="formulaSCP" style="width: 100%; text-align: left;" 
213
|-
214
| 
215
{| style="text-align: left; margin:auto;width: 100%;" 
216
|-
217
| style="text-align: center;" | <math>\omega \left(\vartheta ,0\right) =  v\left(\vartheta \right), </math>
218
|}
219
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
220
|}
221
222
where the Caputo operator of <math display="inline">\omega \left(\vartheta ,\iota \right)</math> is denoted by <math display="inline">D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math>, the linear function is denoted by <math display="inline">\mathcal{R}</math>, the non-linear function is denoted by <math display="inline">\mathcal{F}</math> and the source term is denoted by <math display="inline">\hbar (\vartheta ,\iota )</math>. Applying the NT to Eq. ([[#eq-12|12]]) and employing definition 5, we obtain
223
224
{| class="formulaSCP" style="width: 100%; text-align: left;" 
225
|-
226
| 
227
{| style="text-align: left; margin:auto;width: 100%;" 
228
|-
229
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[\omega \left(\vartheta ,\iota \right)\right] =  \frac{q^{\sigma }}{s^{\sigma }}\sum _{i=0}^{n-1}\frac{q^{i-\sigma }}{s^{i+1-\sigma }}\left[D^{i}\omega \left(\vartheta ,\iota \right)\right]_{\iota=0}+\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)\right]-\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )\right]. </math>
230
|}
231
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
232
|}
233
234
Applying the inverse NT to the previous equation, we get
235
236
{| class="formulaSCP" style="width: 100%; text-align: left;" 
237
|-
238
| 
239
{| style="text-align: left; margin:auto;width: 100%;" 
240
|-
241
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
242
|}
243
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
244
|}
245
246
<math display="inline">\mathcal{H}\left(\vartheta ,\iota \right)</math> exists based on the provided initial condition and nonhomogeneous term. Let's suppose that an infinite series solution has the form
247
248
{| class="formulaSCP" style="width: 100%; text-align: left;" 
249
|-
250
| 
251
{| style="text-align: left; margin:auto;width: 100%;" 
252
|-
253
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right)=\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right),\qquad \mathcal{F}\omega (\vartheta ,\iota )=\sum _{n=0}^{\infty}A_{n}, </math>
254
|}
255
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
256
|}
257
258
where <math display="inline">A_{n}</math> denotes the nonlinear term of <math display="inline">\mathcal{F}\omega (\vartheta ,\iota )</math>, then we get
259
260
{| class="formulaSCP" style="width: 100%; text-align: left;" 
261
|-
262
| 
263
{| style="text-align: left; margin:auto;width: 100%;" 
264
|-
265
| style="text-align: center;" | <math>\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\zeta }}{s^{\zeta }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
266
|}
267
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
268
|}
269
270
Ultimately, the analytical solutions are presented in the following form:
271
272
{| class="formulaSCP" style="width: 100%; text-align: left;" 
273
|-
274
| 
275
{| style="text-align: left; margin:auto;width: 100%;" 
276
|-
277
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \sum _{n=0}^{\infty} \omega_{n}\left(\vartheta ,\iota \right). </math>
278
|}
279
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
280
|}
281
282
==4 Numerical examples of the KS models==
283
284
This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.
285
286
===4.1 Example 1===
287
288
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
289
290
<span id="eq-19"></span>
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;width: 100%;" 
295
|-
296
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
299
|}
300
301
with initial condition
302
303
{| class="formulaSCP" style="width: 100%; text-align: left;" 
304
|-
305
| 
306
{| style="text-align: left; margin:auto;width: 100%;" 
307
|-
308
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
309
|}
310
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
311
|}
312
313
The two iterative approaches that have been suggested will be used to resolve this issue.
314
315
'''Solving the Example 1 by Tthe AM: '''
316
317
By using the fractional TAM by first formulating the problem as
318
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;width: 100%;" 
323
|-
324
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
325
|}
326
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
327
|}
328
329
The first problem that has to be resolved is
330
331
<span id="eq-22"></span>
332
{| class="formulaSCP" style="width: 100%; text-align: left;" 
333
|-
334
| 
335
{| style="text-align: left; margin:auto;width: 100%;" 
336
|-
337
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
338
|}
339
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
340
|}
341
342
The solution of Eq. ([[#eq-22|22]]) may be obtained by using a straightforward procedure, as shown below
343
344
{| class="formulaSCP" style="width: 100%; text-align: left;" 
345
|-
346
| 
347
{| style="text-align: left; margin:auto;width: 100%;" 
348
|-
349
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
350
|}
351
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
352
|}
353
354
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
355
356
{| class="formulaSCP" style="width: 100%; text-align: left;" 
357
|-
358
| 
359
{| style="text-align: left; margin:auto;width: 100%;" 
360
|-
361
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
362
|}
363
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
364
|}
365
366
It is possible to compute the next iteration, and we have
367
368
<span id="eq-25"></span>
369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
370
|-
371
| 
372
{| style="text-align: left; margin:auto;width: 100%;" 
373
|-
374
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
375
|}
376
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
377
|}
378
379
Then, by integrating both sides of Eq. ([[#eq-25|25]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
380
381
{| class="formulaSCP" style="width: 100%; text-align: left;" 
382
|-
383
| 
384
{| style="text-align: left; margin:auto;width: 100%;" 
385
|-
386
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
387
|}
388
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
389
|}
390
391
The next iteration appears as
392
393
{| class="formulaSCP" style="width: 100%; text-align: left;" 
394
|-
395
| 
396
{| style="text-align: left; margin:auto;width: 100%;" 
397
|-
398
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta +\frac{15\tanh ^{3}(\kappa (\vartheta{-\eta}))-45\tanh (\kappa (\vartheta{-\eta}))}{19\sqrt{19}}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{4}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}</math>
399
|-
400
| style="text-align: center;" | <math>     \times \left(19\sqrt{19}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(15\left(152\sqrt{19}\kappa ^{3}-1\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))+76\sqrt{19}\kappa \left(1-16\kappa ^{2}\right)-30\right)\right) </math>
401
|}
402
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
403
|}
404
405
The following iteration is calculable and is provided as
406
407
<span id="eq-28"></span>
408
{| class="formulaSCP" style="width: 100%; text-align: left;" 
409
|-
410
| 
411
{| style="text-align: left; margin:auto;width: 100%;" 
412
|-
413
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
414
|}
415
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
416
|}
417
418
Then, by integrating both sides of Eq. ([[#eq-28|28]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
419
420
{| class="formulaSCP" style="width: 100%; text-align: left;" 
421
|-
422
| 
423
{| style="text-align: left; margin:auto;width: 100%;" 
424
|-
425
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
426
|}
427
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
428
|}
429
430
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-19|19]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
431
432
{| class="formulaSCP" style="width: 100%; text-align: left;" 
433
|-
434
| 
435
{| style="text-align: left; margin:auto;width: 100%;" 
436
|-
437
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
438
|}
439
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
440
|}
441
442
Here are some details on the exact solution to which the preceding approximate solution leads [30],
443
444
<span id="eq-31"></span>
445
{| class="formulaSCP" style="width: 100%; text-align: left;" 
446
|-
447
| 
448
{| style="text-align: left; margin:auto;width: 100%;" 
449
|-
450
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\zeta}\iota{-\eta})]-45\tanh[\kappa(\vartheta-\zeta\iota-\eta)] </math>
451
|}
452
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
453
|}
454
455
'''Solving the Example 1 by the DM: '''
456
457
Eq. ([[#eq-19|19]]) may be simplified by applying NT to it
458
459
{| class="formulaSCP" style="width: 100%; text-align: left;" 
460
|-
461
| 
462
{| style="text-align: left; margin:auto;width: 100%;" 
463
|-
464
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
465
|}
466
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
467
|}
468
469
The definition of the non-linear operator is
470
471
<span id="eq-33"></span>
472
{| class="formulaSCP" style="width: 100%; text-align: left;" 
473
|-
474
| 
475
{| style="text-align: left; margin:auto;width: 100%;" 
476
|-
477
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
478
|}
479
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
480
|}
481
482
When Eq. ([[#eq-33|33]]) is made simpler, we obtain
483
484
<span id="eq-34"></span>
485
{| class="formulaSCP" style="width: 100%; text-align: left;" 
486
|-
487
| 
488
{| style="text-align: left; margin:auto;width: 100%;" 
489
|-
490
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
491
|}
492
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
493
|}
494
495
Eq. ([[#eq-34|34]]) is transformed by inverse NT to give us
496
497
{| class="formulaSCP" style="width: 100%; text-align: left;" 
498
|-
499
| 
500
{| style="text-align: left; margin:auto;width: 100%;" 
501
|-
502
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
503
|}
504
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
505
|}
506
507
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
508
509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
510
|-
511
| 
512
{| style="text-align: left; margin:auto;width: 100%;" 
513
|-
514
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
517
|}
518
519
Using the NDM procedure, we get
520
521
{| class="formulaSCP" style="width: 100%; text-align: left;" 
522
|-
523
| 
524
{| style="text-align: left; margin:auto;width: 100%;" 
525
|-
526
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)], </math>
527
|}
528
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
529
|}
530
531
{| class="formulaSCP" style="width: 100%; text-align: left;" 
532
|-
533
| 
534
{| style="text-align: left; margin:auto;width: 100%;" 
535
|-
536
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  -\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{7}(\kappa (\vartheta{-\eta}))}{27436\sqrt{19}\Gamma (\sigma{+1)}}\biggl(\left(\left(11552\kappa ^{3}-722\kappa{+15}\sqrt{19}\right)\cosh (2\kappa (\vartheta{-\eta}))-31768\kappa ^{3}-722\kappa{+30}\sqrt{19}\right)</math>
537
|-
538
| style="text-align: center;" | <math>     \times{4}\sinh (\kappa (\vartheta{-\eta}))-1083\zeta \cosh (\kappa (\vartheta{-\eta}))-361\zeta \cosh (3\kappa (\vartheta{-\eta}))\biggr), </math>
539
|}
540
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
541
|}
542
543
{| class="formulaSCP" style="width: 100%; text-align: left;" 
544
|-
545
| 
546
{| style="text-align: left; margin:auto;width: 100%;" 
547
|-
548
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{45\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{11}(\kappa (\vartheta{-\eta}))}{39617584\Gamma (2\sigma{+1)}}\Bigl\{1444\zeta \left(4712\sqrt{19}\kappa ^{3}-152\sqrt{19}\kappa{+45}\right)\cosh (3\kappa (\vartheta{-\eta}))</math>
549
|-
550
| style="text-align: center;" | <math>     -21660\zeta \left(1216\sqrt{19}\kappa ^{3}+38\sqrt{19}\kappa{-27}\right)\cosh (\kappa (\vartheta{-\eta}))-108300\zeta \cosh (5\kappa (\vartheta{-\eta}))</math>
551
|-
552
| style="text-align: center;" | <math>     +8121056\sqrt{19}\zeta \kappa ^{3}\cosh (5\kappa (\vartheta{-\eta}))+109744\sqrt{19}\zeta \kappa \cosh (5\kappa (\vartheta{-\eta}))-21660\zeta \cosh (7\kappa (\vartheta{-\eta}))</math>
553
|-
554
| style="text-align: center;" | <math>     -877952\sqrt{19}\zeta \kappa ^{3}\cosh (7\kappa (\vartheta{-\eta}))++54872\sqrt{19}\zeta \kappa \cosh (7\kappa (\vartheta{-\eta}))-53100\sqrt{19}\sinh (\kappa (\vartheta{-\eta}))</math>
555
|-
556
| style="text-align: center;" | <math>     +469242240\kappa ^{3}\sinh (\kappa (\vartheta{-\eta}))-1097440\sqrt{19}\kappa ^{2}\sinh (\kappa (\vartheta{-\eta}))+1992720\kappa \sinh (\kappa (\vartheta{-\eta}))</math>
557
|-
558
| style="text-align: center;" | <math>     -48348816640\sqrt{19}\kappa ^{6}\sinh (\kappa (\vartheta{-\eta}))-215098240\sqrt{19}\kappa ^{4}\sinh (\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (\kappa (\vartheta{-\eta}))</math>
559
|-
560
| style="text-align: center;" | <math>     -1481544\sqrt{19}\kappa ^{2}\sinh (3\kappa (\vartheta{-\eta}))+1906080\kappa \sinh (3\kappa (\vartheta{-\eta}))-13500\sqrt{19}\sinh (3\kappa (\vartheta{-\eta}))</math>
561
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
562
|-
563
| style="text-align: center;" | <math>     -143545152\sqrt{19}\kappa ^{4}\sinh (3\kappa (\vartheta{-\eta}))-85600320\kappa ^{3}\sinh (3\kappa (\vartheta{-\eta}))+16385218176\sqrt{19}\kappa ^{6}\sinh (3\kappa (\vartheta{-\eta}))</math>
564
|-
565
| style="text-align: center;" | <math>     +61731\sqrt{19}\zeta ^{2}\sinh (3\kappa (\vartheta{-\eta}))-173280\kappa \sinh (5\kappa (\vartheta{-\eta}))+4500\sqrt{19}\sinh (5\kappa (\vartheta{-\eta}))</math>
566
|-
567
| style="text-align: center;" | <math>     +68041280\sqrt{19}\kappa ^{4}\sinh (5\kappa (\vartheta{-\eta}))-12822720\kappa ^{3}\sinh (5\kappa (\vartheta{-\eta}))-274360\sqrt{19}\kappa ^{2}\sinh (5\kappa (\vartheta{-\eta}))</math>
568
|-
569
| style="text-align: center;" | <math>     -1611041920\sqrt{19}\kappa ^{6}\sinh (5\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (5\kappa (\vartheta{-\eta}))+900\sqrt{19}\sinh (7\kappa (\vartheta{-\eta}))</math>
570
|-
571
| style="text-align: center;" | <math>     +1386240\kappa ^{3}\sinh (7\kappa (\vartheta{-\eta}))+109744\sqrt{19}\kappa ^{2}\sinh (7\kappa (\vartheta{-\eta}))-86640\kappa \sinh (7\kappa (\vartheta{-\eta}))</math>
572
|-
573
| style="text-align: center;" | <math>     +28094464\sqrt{19}\kappa ^{6}\sinh (7\kappa (\vartheta{-\eta}))-3511808\sqrt{19}\kappa ^{4}\sinh (7\kappa (\vartheta{-\eta}))+6859\sqrt{19}\zeta ^{2}\sinh (7\kappa (\vartheta{-\eta}))\Bigr\}. </math>
574
|}
575
|}
576
577
And so on. The behavior of a collection of approximate solutions obtained in Figure 1 and Table 1.
578
579
<div id='img-1'></div>
580
<div id='img-1'></div>
581
<div id='img-1'></div>
582
<div id='img-1'></div>
583
<div id='img-1'></div>
584
<div id='img-1f'></div>
585
<div id='img-1'></div>
586
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
587
|-
588
|[[Image:Draft_Hagag_330916598-KS1-ex.png|232px|Exact solution of ω(ϑ,ι).]]
589
|[[Image:Draft_Hagag_330916598-KS1-NDM.png|232px|Approximate solution of ω(ϑ,ι).]]
590
|- style="text-align: center; font-size: 75%;"
591
| (1) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
592
| (1) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
593
|-
594
|[[Image:Draft_Hagag_330916598-KS1-error1.png|232px|Absolute error at ι=1.]]
595
|[[Image:Draft_Hagag_330916598-KS1-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
596
|- style="text-align: center; font-size: 75%;"
597
| (1) Absolute error at <math display="inline">\iota=1</math>.
598
| (1) Representation of the approximate solution with the exact solution.
599
|-
600
|[[Image:Draft_Hagag_330916598-KS1(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
601
|[[Image:Draft_Hagag_330916598-KS1-alpha.png|236px|The solution of the power series approaches the exact solution.]]
602
|- style="text-align: center; font-size: 75%;"
603
| (1) Comparative graphical simulation in the steady state.
604
| (f) The solution of the power series approaches the exact solution.
605
|- style="text-align: center; font-size: 75%;"
606
| colspan="2" | '''Figure 1:''' The behavior of a collection of approximate solutions obtained for case (1) at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
607
|}
608
609
610
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
611
|+ style="font-size: 75%;" |Table. 1 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-19|19]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
612
|-
613
| <math display="inline">\vartheta </math> 
614
| <math>\iota </math>
615
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
616
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
617
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30] 
618
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
619
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
620
|-
621
| rowspan="5" | 1
622
| 0.2 
623
| 2.80424E08 
624
| 2.48734E09 
625
| 2.80432E08 
626
| 2.14599E06 
627
| 2.67151E06
628
|-
629
| 0.4 
630
| 4.95147E07 
631
| 8.62662E08 
632
| 4.95160E07 
633
| 2.08915E06 
634
| 5.50393E06
635
|-
636
| 0.6 
637
| 2.78302E06 
638
| 7.13064E07 
639
| 2.78309E06 
640
| 2.7345E06 
641
| 7.47041E06
642
|-
643
| 0.8 
644
| 9.82780E06 
645
| 3.28572E06 
646
| 9.82802E06 
647
| 1.67288E05 
648
| 5.46055E06
649
|-
650
| 1 
651
| 2.69887E05 
652
| 1.10169E05 
653
| 2.69893E05 
654
| 4.67056E05 
655
| 6.17336E06
656
|-
657
| rowspan="5" | 2
658
| 0.2 
659
| 1.78570E08 
660
| 1.58980E09 
661
| 1.78573E08 
662
| 1.35933E06 
663
| 1.69305E06
664
|-
665
| 0.4 
666
| 3.15442E07 
667
| 5.51676E08 
668
| 3.15448E07 
669
| 1.32002E06 
670
| 3.48849E06
671
|-
672
| 0.6 
673
| 1.77395E06 
674
| 4.56307E07 
675
| 1.77397E06 
676
| 1.75053E06 
677
| 4.72985E06
678
|-
679
| 0.8 
680
| 6.26867E06 
681
| 2.10428E06 
682
| 6.26876E06 
683
| 1.06596E05 
684
| 3.43118E06
685
|-
686
| 1 
687
| 1.72293E05 
688
| 7.06240E06 
689
| 1.72296E05 
690
| 2.97593E05 
691
| 4.02031E06
692
|-
693
| rowspan="5" | 3
694
| 0.2 
695
| 1.13535E08 
696
| 1.01377E09 
697
| 1.13536E08 
698
| 8.60648E07 
699
| 1.07236E06
700
|-
701
| 0.4 
702
| 2.00629E07 
703
| 3.51942E-08 
704
| 2.00631E07 
705
| 8.34089E07 
706
| 2.20978E06
707
|-
708
| 0.6 
709
| 1.12877E06 
710
| 2.91252E07 
711
| 1.12878E06 
712
| 1.11763E06 
713
| 2.99357E06
714
|-
715
| 0.8 
716
| 3.99093E06 
717
| 1.34397E06 
718
| 1.99096E06 
719
| 6.78091E06 
720
| 2.15839E06
721
|-
722
| 1 
723
| 1.09764E05 
724
| 4.51409E06 
725
| 1.09765E06 
726
| 1.89302E05 
727
| 2.60114E06
728
|-
729
| rowspan="5" | 4
730
| 0.2 
731
| 7.20971E09 
732
| 6.45271E-10 
733
| 7.20976E09 
734
| 5.44714E07 
735
| 6.78920E07
736
|-
737
| 0.4 
738
| 1.27440E07 
739
| 2.24089E08 
740
| 1.27441E07 
741
| 5.27063E07 
742
| 1.39914E06
743
|-
744
| 0.6 
745
| 7.17241E07 
746
| 1.85523E07 
747
| 7.17246E07 
748
| 7.12053E07 
749
| 1.89411E06
750
|-
751
| 0.8 
752
| 2.53701E06 
753
| 8.56512E07 
754
| 2.53702E06 
755
| 4.30781E06 
756
| 1.35897E06
757
|-
758
| 1 
759
| 6.98135E06 
760
| 2.87858E06 
761
| 6.98138E06 
762
| 1.20257E05 
763
| 1.67448E06
764
|-
765
| rowspan="5" | 5
766
| 0.2 
767
| 4.57386E09 
768
| 4.10120E-10 
769
| 4.57388E09 
770
| 3.44656E07 
771
| 4.29680E07
772
|-
773
| 0.4 
774
| 8.08663E08 
775
| 1.42464E08 
776
| 8.08667E08 
777
| 3.33064E07 
778
| 8.85550E07
779
|-
780
| 0.6 
781
| 4.55248E07 
782
| 1.17984E07 
783
| 4.55249E07 
784
| 4.52901E07 
785
| 1.19818E06
786
|-
787
| 0.8 
788
| 1.61084E06 
789
| 5.44920E07 
790
| 3.61084E07 
791
| 2.73379E06 
792
| 8.56270E07
793
|-
794
| 1 
795
| 4.43460E06 
796
| 1.83226E06 
797
| 4.43462E07 
798
| 7.63155E06 
799
| 1.07374E06
800
801
|}
802
803
===4.2 Example 2===
804
805
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
806
807
<span id="eq-40"></span>
808
{| class="formulaSCP" style="width: 100%; text-align: left;" 
809
|-
810
| 
811
{| style="text-align: left; margin:auto;width: 100%;" 
812
|-
813
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
814
|}
815
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
816
|}
817
818
with initial condition
819
820
{| class="formulaSCP" style="width: 100%; text-align: left;" 
821
|-
822
| 
823
{| style="text-align: left; margin:auto;width: 100%;" 
824
|-
825
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
826
|}
827
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
828
|}
829
830
The two iterative approaches that have been suggested will be used to resolve this issue.
831
832
'''Solving the Example 2 by the AM: '''
833
834
By using the fractional TAM by first formulating the problem as
835
836
{| class="formulaSCP" style="width: 100%; text-align: left;" 
837
|-
838
| 
839
{| style="text-align: left; margin:auto;width: 100%;" 
840
|-
841
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
842
|}
843
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
844
|}
845
846
The first problem that has to be resolved is
847
848
<span id="eq-43"></span>
849
{| class="formulaSCP" style="width: 100%; text-align: left;" 
850
|-
851
| 
852
{| style="text-align: left; margin:auto;width: 100%;" 
853
|-
854
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
855
|}
856
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
857
|}
858
859
The solution of Eq. ([[#eq-43|43]]) may be obtained by using a straightforward procedure, as shown below
860
861
{| class="formulaSCP" style="width: 100%; text-align: left;" 
862
|-
863
| 
864
{| style="text-align: left; margin:auto;width: 100%;" 
865
|-
866
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
867
|}
868
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
869
|}
870
871
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
872
873
{| class="formulaSCP" style="width: 100%; text-align: left;" 
874
|-
875
| 
876
{| style="text-align: left; margin:auto;width: 100%;" 
877
|-
878
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
879
|}
880
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
881
|}
882
883
It is possible to compute the next iteration, and we have
884
885
<span id="eq-46"></span>
886
{| class="formulaSCP" style="width: 100%; text-align: left;" 
887
|-
888
| 
889
{| style="text-align: left; margin:auto;width: 100%;" 
890
|-
891
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
892
|}
893
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
894
|}
895
896
Then, by integrating both sides of Eq. ([[#eq-46|46]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
897
898
{| class="formulaSCP" style="width: 100%; text-align: left;" 
899
|-
900
| 
901
{| style="text-align: left; margin:auto;width: 100%;" 
902
|-
903
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
904
|}
905
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
906
|}
907
908
The next iteration appears as
909
910
{| class="formulaSCP" style="width: 100%; text-align: left;" 
911
|-
912
| 
913
{| style="text-align: left; margin:auto;width: 100%;" 
914
|-
915
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta{+\gamma}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\biggl(16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
916
|-
917
| style="text-align: center;" | <math>     \times \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\biggr). </math>
918
|}
919
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
920
|}
921
922
The following iteration is calculable and is provided as
923
924
<span id="eq-49"></span>
925
{| class="formulaSCP" style="width: 100%; text-align: left;" 
926
|-
927
| 
928
{| style="text-align: left; margin:auto;width: 100%;" 
929
|-
930
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
931
|}
932
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
933
|}
934
935
Then, by integrating both sides of Eq. ([[#eq-49|49]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
936
937
{| class="formulaSCP" style="width: 100%; text-align: left;" 
938
|-
939
| 
940
{| style="text-align: left; margin:auto;width: 100%;" 
941
|-
942
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
943
|}
944
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
945
|}
946
947
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-40|40]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
948
949
{| class="formulaSCP" style="width: 100%; text-align: left;" 
950
|-
951
| 
952
{| style="text-align: left; margin:auto;width: 100%;" 
953
|-
954
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
955
|}
956
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
957
|}
958
959
Here are some details on the exact solution to which the preceding approximate solution leads [30],
960
961
<span id="eq-52"></span>
962
{| class="formulaSCP" style="width: 100%; text-align: left;" 
963
|-
964
| 
965
{| style="text-align: left; margin:auto;width: 100%;" 
966
|-
967
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\zeta}\iota{-\eta}))-9\tanh (\kappa (\vartheta{-\zeta}\iota{-\eta}))\right). </math>
968
|}
969
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
970
|}
971
972
'''Solving Example 2 by the NDM: '''
973
974
Eq. ([[#eq-40|40]]) may be simplified by applying NT to it
975
976
{| class="formulaSCP" style="width: 100%; text-align: left;" 
977
|-
978
| 
979
{| style="text-align: left; margin:auto;width: 100%;" 
980
|-
981
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
982
|}
983
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
984
|}
985
986
The definition of the non-linear operator is
987
988
<span id="eq-54"></span>
989
{| class="formulaSCP" style="width: 100%; text-align: left;" 
990
|-
991
| 
992
{| style="text-align: left; margin:auto;width: 100%;" 
993
|-
994
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
995
|}
996
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
997
|}
998
999
When Eq. ([[#eq-54|54]]) is made simpler, we obtain
1000
1001
<span id="eq-55"></span>
1002
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1003
|-
1004
| 
1005
{| style="text-align: left; margin:auto;width: 100%;" 
1006
|-
1007
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
1008
|}
1009
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
1010
|}
1011
1012
Eq. ([[#eq-55|55]]) is transformed by inverse NT to give us
1013
1014
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1015
|-
1016
| 
1017
{| style="text-align: left; margin:auto;width: 100%;" 
1018
|-
1019
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
1020
|}
1021
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
1022
|}
1023
1024
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
1025
1026
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1027
|-
1028
| 
1029
{| style="text-align: left; margin:auto;width: 100%;" 
1030
|-
1031
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
1032
|}
1033
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
1034
|}
1035
1036
Using the NDM procedure, we get
1037
1038
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1039
|-
1040
| 
1041
{| style="text-align: left; margin:auto;width: 100%;" 
1042
|-
1043
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right), </math>
1044
|}
1045
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
1046
|}
1047
1048
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1049
|-
1050
| 
1051
{| style="text-align: left; margin:auto;width: 100%;" 
1052
|-
1053
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\Bigl\{16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
1054
|-
1055
| style="text-align: center;" | <math>     \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\Bigr\}, </math>
1056
|}
1057
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
1058
|}
1059
1060
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1061
|-
1062
| 
1063
{| style="text-align: left; margin:auto;width: 100%;" 
1064
|-
1065
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{90\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{2476099\Gamma (2\sigma{+1)}}\Bigl\{11552\zeta \left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)-8\tanh (\kappa (\vartheta{-\eta}))</math>
1066
|-
1067
| style="text-align: center;" | <math>     \times \left(\sqrt{209}\left(6859\zeta ^{2}+9900\right)+1444\kappa \left(4\kappa ^{2}+1\right)\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-330\right)\right)</math>
1068
|-
1069
| style="text-align: center;" | <math>     -2475\left(5776\left(1596\sqrt{209}\kappa ^{3}-1573\right)\kappa ^{3}+6655\sqrt{209}\right)\tanh (\kappa (\vartheta{-\eta}))\hbox{ sech}^{8}(\kappa (\vartheta{-\eta}))</math>
1070
|-
1071
| style="text-align: center;" | <math>     -15\hbox{ sech}^{6}(\kappa (\vartheta{-\eta}))\Bigl\{-4\left(361\kappa \left(16\kappa ^{2}\left(133\sqrt{209}\kappa \left(662\kappa ^{2}+11\right)-92686\right)-14641\right)+459195\sqrt{209}\right)</math>
1072
|-
1073
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))+27797\zeta \left(152\sqrt{209}\kappa ^{3}-121\right)\Bigr\}+20\hbox{ sech}^{4}(\kappa (\vartheta{-\eta}))\Bigl\{\tanh (\kappa (\vartheta{-\eta}))</math>
1074
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
1075
|-
1076
| style="text-align: center;" | <math>     -3\left(361\kappa \left(\kappa \left(8\kappa \left(19\sqrt{209}\kappa \left(3262\kappa ^{2}+155\right)-72897\right)+209\sqrt{209}\right)-16698\right)+228690\sqrt{209}\right)</math>
1077
|-
1078
| style="text-align: center;" | <math>     +361\zeta \left(19\sqrt{209}\kappa \left(620\kappa ^{2}+11\right)-10527\right)\Bigr\}+2\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))\Bigl\{-1444\zeta \left(76\sqrt{209}\kappa \left(118\kappa ^{2}+7\right)-10065\right)</math>
1079
|-
1080
| style="text-align: center;" | <math>     +11\sqrt{209}\left(6859\zeta ^{2}+96300\right)+5776\kappa \left(8\left(19\sqrt{209}\kappa \left(478\kappa ^{2}+59\right)-13695\right)\kappa ^{2}+266\sqrt{209}\kappa{-8085}\right)</math>
1081
|-
1082
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))\Bigr\}\Bigr\}. </math>
1083
|}
1084
|}
1085
1086
And so on. The behavior of a collection of approximate solutions obtained in Figure 2 and Table 2.
1087
1088
1089
<div id='img-2'></div>
1090
<div id='img-2'></div>
1091
<div id='img-2'></div>
1092
<div id='img-2'></div>
1093
<div id='img-2'></div>
1094
<div id='img-2f'></div>
1095
<div id='img-2'></div>
1096
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1097
|-
1098
|[[Image:Draft_Hagag_330916598-KS2-ex.png|232px|Exact solution of ω(ϑ,ι).]]
1099
|[[Image:Draft_Hagag_330916598-KS2-app.png|232px|Approximate solution of ω(ϑ,ι).]]
1100
|- style="text-align: center; font-size: 75%;"
1101
| (2) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
1102
| (2) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
1103
|-
1104
|[[Image:Draft_Hagag_330916598-KS2-error.png|232px|Absolute error at ι=1.]]
1105
|[[Image:Draft_Hagag_330916598-KS2-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
1106
|- style="text-align: center; font-size: 75%;"
1107
| (2) Absolute error at <math display="inline">\iota=1</math>.
1108
| (2) Representation of the approximate solution with the exact solution.
1109
|-
1110
|[[Image:Draft_Hagag_330916598-KS2(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
1111
|[[Image:Draft_Hagag_330916598-KS2-alpha.png|236px|The solution of the power series approaches the exact solution.]]
1112
|- style="text-align: center; font-size: 75%;"
1113
| (2) Comparative graphical simulation in the steady state.
1114
| (f) The solution of the power series approaches the exact solution.
1115
|- style="text-align: center; font-size: 75%;"
1116
| colspan="2" | '''Figure 2:''' The behavior of a collection of approximate solutions obtained for case (2) at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
1117
|}
1118
1119
1120
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1121
|+ style="font-size: 75%;" |Table. 2 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-40|40]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
1122
|-
1123
| <math display="inline">\vartheta </math> 
1124
| <math>\iota </math>
1125
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
1126
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
1127
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30] 
1128
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
1129
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
1130
|-
1131
| rowspan="5" | 1
1132
| 0.2 
1133
| 6.63085E09 
1134
| 6.63085E09 
1135
| 2.80432E08 
1136
| 1.96076E08 
1137
| 1.96076E08
1138
|-
1139
| 0.4 
1140
| 6.64967E08 
1141
| 6.64967E08 
1142
| 4.95160E07 
1143
| 1.38124E08 
1144
| 1.38124E08
1145
|-
1146
| 0.6 
1147
| 2.89030E07 
1148
| 2.89030E07 
1149
| 2.78309E06 
1150
| 2.11347E07 
1151
| 2.11347E07
1152
|-
1153
| 0.8 
1154
| 9.08435E07 
1155
| 9.08435E07 
1156
| 9.82802E06 
1157
| 8.09626E07 
1158
| 8.09626E07
1159
|-
1160
| 1 
1161
| 2.42595E06 
1162
| 2.42595E06 
1163
| 2.69893E05 
1164
| 2.31168E06 
1165
| 2.31168E06
1166
|-
1167
| rowspan="5" | 2
1168
| 0.2 
1169
| 3.09828E09 
1170
| 3.09828E09 
1171
| 1.78573E08 
1172
| 9.16171E09 
1173
| 9.16170E09
1174
|-
1175
| 0.4 
1176
| 3.10707E08 
1177
| 3.10708E08 
1178
| 3.15448E07 
1179
| 6.45387E09 
1180
| 6.45387E09
1181
|-
1182
| 0.6 
1183
| 1.35050E07 
1184
| 1.35050E07 
1185
| 1.77397E06 
1186
| 9.87523E08 
1187
| 9.87523E08
1188
|-
1189
| 0.8 
1190
| 4.24469E07 
1191
| 4.24469E07 
1192
| 6.26876E06 
1193
| 3.78300E07 
1194
| 3.78300E07
1195
|-
1196
| 1 
1197
| 1.13353E06 
1198
| 1.13353E06 
1199
| 1.72296E05 
1200
| 1.08014E06 
1201
| 1.08014E06
1202
|-
1203
| rowspan="5" | 3
1204
| 0.2 
1205
| 1.44768E09 
1206
| 1.44768E09 
1207
| 1.13536E08 
1208
| 4.28083E09 
1209
| 4.28083E09
1210
|-
1211
| 0.4 
1212
| 1.45179E08 
1213
| 1.45179E08 
1214
| 2.00631E07 
1215
| 3.01559E09 
1216
| 3.01559E09
1217
|-
1218
| 0.6 
1219
| 6.31024E08 
1220
| 6.31024E08 
1221
| 1.12878E06 
1222
| 4.61423E08 
1223
| 4.61423E08
1224
|-
1225
| 0.8 
1226
| 1.98334E07 
1227
| 1.98334E07 
1228
| 1.99096E06 
1229
| 1.76761E07 
1230
| 1.76761E07
1231
|-
1232
| 1 
1233
| 5.29645E07 
1234
| 5.29645E07 
1235
| 1.09765E06 
1236
| 5.04697E07 
1237
| 5.04697E07
1238
|-
1239
| rowspan="5" | 4
1240
| 0.2 
1241
| 6.76425E10 
1242
| 6.76430E10 
1243
| 7.20976E09 
1244
| 2.00023E09 
1245
| 2.00023E09
1246
|-
1247
| 0.4 
1248
| 6.78351E09 
1249
| 6.78351E09 
1250
| 1.27441E07 
1251
| 1.40904E09 
1252
| 1.40904E09
1253
|-
1254
| 0.6 
1255
| 2.94847E08 
1256
| 2.94848E08 
1257
| 7.17246E07 
1258
| 2.15601E08 
1259
| 2.15601E08
1260
|-
1261
| 0.8 
1262
| 9.26720E08 
1263
| 9.26720E08 
1264
| 2.53702E06 
1265
| 8.25922E08 
1266
| 8.25922E08
1267
|-
1268
| 1 
1269
| 2.47478E07 
1270
| 2.47478E07 
1271
| 6.98138E06 
1272
| 2.35821E07 
1273
| 2.35821E07
1274
|-
1275
| rowspan="5" | 5
1276
| 0.2 
1277
| 3.16056E10 
1278
| 3.16065E10 
1279
| 4.57388E09 
1280
| 9.34614E10 
1281
| 9.34609E10
1282
|-
1283
| 0.4 
1284
| 3.16960E09 
1285
| 3.16961E09 
1286
| 8.08667E08 
1287
| 6.58372E10 
1288
| 6.58377E10
1289
|-
1290
| 0.6 
1291
| 1.37768E08 
1292
| 1.37768E08 
1293
| 4.55249E07 
1294
| 1.00740E08 
1295
| 1.00740E08
1296
|-
1297
| 0.8 
1298
| 4.33012E08 
1299
| 4.33012E08 
1300
| 3.61084E07 
1301
| 3.85914E08 
1302
| 3.85914E08
1303
|-
1304
| 1 
1305
| 1.15635E07 
1306
| 1.15635E07 
1307
| 4.43462E07 
1308
| 1.10188E07 
1309
| 1.10188E07
1310
1311
|}
1312
1313
==5 Numerical results and discussion==
1314
1315
In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\omega _{n}</math> and fractional order <math display="inline">\sigma </math> using two methods: TAM and NDM. In Example 1, Fig. 1(a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). Fig. 1(d) shows the <math display="inline">\omega _{n}</math>-curves for the FKS equation at <math display="inline">\iota=0.1</math> and shows their convergence. In addition, in Fig. 1(e), we examined the precise solution and TAM for various values of n at <math display="inline">\iota=0.1</math>, and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in Fig. 1(f), values less than one increase the convergence between the exact solution and TAM. In Fig. 2, we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in Fig. 2 (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\sigma=1,0.9</math> were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.
1316
1317
==6 Conclusion==
1318
1319
In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.
1320
1321
'''Conflict of Interest:''' The author declare that there is no Conflict of Interest. 
1322
1323
'''Acknowledgments:''' Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R215), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
1324
1325
===BIBLIOGRAPHY===
1326
1327
<div id="cite-1"></div>
1328
'''[1]''' Miller, K.S. and Ross, B., 1993. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore.
1329
1330
<div id="cite-2"></div>
1331
'''[2]''' Podlubny, I., 1999. Fractional differential equations, mathematics in science and engineering, Academic Press, San Diego.
1332
1333
<div id="cite-3"></div>
1334
'''[3]''' Butzer, P.L. and Westphal, U., 2000. An introduction to fractional calculus. In: Hilfer, R., Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore City (pp. 1-85).
1335
1336
<div id="cite-4"></div>
1337
'''[4]''' Wang, Z., Huang, X., Li, Y.X. and Song, X.N., 2013. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), p.010504.
1338
1339
<div id="cite-5"></div>
1340
'''[5]''' Oldham, K. and Spanier, J., 1974. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Academic Press, New York.
1341
1342
<div id="cite-6"></div>
1343
'''[6]''' Hilfer, R. ed., 2000. Applications of fractional calculus in physics. World scientific.https://api.semanticscholar.org/CorpusID:117406670.
1344
1345
<div id="cite-7"></div>
1346
'''[7]''' Torvik, P.J. and Bagley, R.L., 1984. On the appearance of the fractional derivative in the behavior of real materials, vol. 51, no. 2, pp. 294-298.
1347
1348
<div id="cite-8"></div>
1349
'''[8]''' Alqahtani, Z. and Hagag, A.E., 2023. A fractional numerical study on a plant disease model with replanting and preventive treatment. Métodos numéricos para cálculo y diseño en ingeniería: Revista internacional, 39(3), pp.1-21.
1350
1351
<div id="cite-9"></div>
1352
'''[9]''' Li, C., Chen, G. and Zhao, S., 2004. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1), pp.65-68.
1353
1354
<div id="cite-10"></div>
1355
'''[10]''' Ellahi, R., Alamri, S.Z., Basit, A. and Majeed, A., 2018. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), pp.476-482.
1356
1357
<div id="cite-11"></div>
1358
'''[11]''' Rademacher, J.D. and Wittenberg, R.W., 2006. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation, J. Comput. Nonlinear Dynam., 1(4):336-347.
1359
1360
<div id="cite-12"></div>
1361
'''[12]''' Zeeshan, A., Hussain, F., Ellahi, R. and Vafai, K., 2019. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, p.110898.
1362
1363
<div id="cite-13"></div>
1364
'''[13]''' Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R., 2019. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080.
1365
1366
<div id="cite-14"></div>
1367
'''[14]''' Prakash, J., Tripathi, D., Tiwari, A.K., Sait, S.M. and Ellahi, R., 2019. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7), p.868.
1368
1369
<div id="cite-15"></div>
1370
'''[15]''' Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M., 2019. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560.
1371
1372
<div id="cite-16"></div>
1373
'''[16]''' Conte, R., 2003. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations: Lectures Given at the CIME Summer School Held in Cetraro, Italy, September 5-12, 1999 (pp. 1-83). Berlin, Heidelberg: Springer Berlin Heidelberg.
1374
1375
<div id="cite-17"></div>
1376
'''[17]''' Kuramoto, Y. and Tsuzuki, T., 1976. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2), pp.356-369.
1377
1378
<div id="cite-18"></div>
1379
'''[18]''' Tadmor, E., 1986. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4), pp.884-893.
1380
1381
<div id="cite-19"></div>
1382
'''[19]''' Sivashinsky, G.I., 1983. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1), pp.179-199.
1383
1384
<div id="cite-20"></div>
1385
'''[20]''' Hooper, A.P. and Grimshaw, R., 1985. Nonlinear instability at the interface between two viscous fluids. The Physics of fluids, 28(1), pp.37-45.
1386
1387
<div id="cite-21"></div>
1388
'''[21]''' Akrivis, G. and Smyrlis, Y.S., 2004. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied numerical mathematics, 51(2-3), pp.151-169.
1389
1390
<div id="cite-22"></div>
1391
'''[22]''' Akrivis, G.D., 1992. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63, pp.1-11.
1392
1393
<div id="cite-23"></div>
1394
'''[23]''' Ersoy, O. and Dag, I., 2016. The Exponential Cubic B-Spline Collocation Method for the Kuramoto-Sivashinsky Equation. Filomat, 30(3), pp.853-861.
1395
1396
<div id="cite-24"></div>
1397
'''[24]''' Rezazadeh, H. and Ziabarya, B.P., 2016. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3), pp.106- 109.
1398
1399
<div id="cite-25"></div>
1400
'''[25]''' Manaa, S.A., Easif, F.H. and Yousif, M.A., 2014. Adomian Decomposition Method for Solving the Kuramoto-Sivashinsky Equation, IOSR Journal of Mathematics, 10:08-12.
1401
1402
<div id="cite-26"></div>
1403
'''[26]''' Kulkarni, S., Takale, K. and Gaikwad, S., 2020. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3, 2020), pp.1078-1084.
1404
1405
<div id="cite-27"></div>
1406
'''[27]''' Okeke, J.E., Okoli, O.C., Obi, T.A. and Ujumadu, R.N., 2022. New Exact Solution of a Class of Kuramoto Sivashinsky (KS) Equations using Double Reduction Theory. 7:477-487.
1407
1408
<div id="cite-28"></div>
1409
'''[28]''' Kilicman, A. and Silambarasan, R., 2018. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10), p.527.
1410
1411
<div id="cite-29"></div>
1412
'''[29]''' Noor, M.A., Mohyud-Din, S.T. and Waheed, A., 2009. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29, pp.1-13.
1413
1414
<div id="cite-30"></div>
1415
'''[30]''' Veeresha, P. and Prakasha, D.G., 2021. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2), p.33.
1416
1417
<div id="cite-31"></div>
1418
'''[31]''' Abbasbandy, S., 2008. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52, pp.35-40.
1419
1420
<div id="cite-32"></div>
1421
'''[32]''' Kurulay, M., Secer, A. and Akinlar, M.A., 2013. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1), pp.267-271.
1422
1423
<div id="cite-33"></div>
1424
'''[33]''' Shah, R., Khan, H., Baleanu, D., Kumam, P. and Arif, M., 2020. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1), pp.402-411.
1425
1426
<div id="cite-34"></div>
1427
'''[34]''' Acan, O. and Keskin, Y., 2015, March. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings (Vol. 1648, No. 1, p. 470003). AIP Publishing LLC.
1428
1429
<div id="cite-35"></div>
1430
'''[35]''' Temimi, H. and Ansari, A.R., 2011. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2), pp.203-210.
1431
1432
<div id="cite-36"></div>
1433
'''[36]''' Al-Hanaya, A., Alotaibi, M., Shqair, M. and Hagag, A.E., 2023. MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12), pp.29440-29452.
1434
1435
<div id="cite-37"></div>
1436
'''[37]''' Rawashdeh, M.S., 2017. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7), pp.2362-2376.
1437
1438
<div id="cite-38"></div>
1439
'''[38]''' Liouville, J., 1832. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. 9:373-391.
1440
1441
<div id="cite-39"></div>
1442
'''[39]''' Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., 2006. Theory and applications of fractional differential equations, elsevier, 204:1-523.
1443
1444
<div id="cite-40"></div>
1445
'''[40]''' Khan, Z.H. and Khan, W.A., 2008. N-transform properties and applications. NUST journal of engineering sciences, 1(1), pp.127-133.
1446
1447
<div id="cite-41"></div>
1448
'''[41]''' Belgacem, F.B.M. and Silambarasan, R., 2012, November. Advances in the natural transform. In AIP conference proceedings (Vol. 1493, No. 1, pp. 106-110). American Institute of Physics.
1449

Return to Hagag 2023a.

Back to Top

Document information

Published on 22/02/24
Accepted on 14/02/24
Submitted on 29/11/23

Volume 40, Issue 1, 2024
DOI: 10.23967/j.rimni.2024.02.003
Licence: CC BY-NC-SA license

Document Score

0

Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?