You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Reliable iterative techniques for solving the KS equation arising in fluid flow ==
3
-->
4
5
==Abstract==
6
7
In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide <math>\omega _{n}</math>-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.
8
9
'''Keywords:''' Kuramoto-Sivashinsky equation; Laplace transform; Natural decomposition method (NDM); Temimi-Ansari method (TAM).
10
11
==1 Introduction==
12
13
Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.
14
15
Gregory I. Sivashinsky measured the situation of a laminar flaming front in 1977. When Yoshiki Kuramoto simultaneously designed diffusion-induced chaos in a three-dimensional simulation of the Belousov-Zabotinskii transformation [10-13], he created a certain problem. The result of their collaboration is known as the Kuramoto-Sivashinsky (KS) model. This system describes the variations in the orientation of the combustion front, the flow of a liquid down a circular surface, and a dynamically specific oscillating of chemical compounds in a fluid that is homogeneous [14-16]. It creates chaotic behavior and necessitates a result resembling waves traveling in a finite space domain without changing scale. That has numerous implementations in a variety of concepts, such as response diffusion systems [17], thin film hydrodynamics [18], and front burn instability [19], as well as lengthy waves on functionality in a few noxious fluids [20].
16
17
The general Kuramoto-Sivashinsky equation (fractional Kuramoto-Sivashisky equation) is:
18
19
{| class="formulaSCP" style="width: 100%; text-align: left;" 
20
|-
21
| 
22
{| style="text-align: left; margin:auto;width: 100%;" 
23
|-
24
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega{+\omega}\frac{\partial \omega }{\partial \vartheta }+\alpha \frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\gamma \frac{\partial ^{3}\omega }{\partial \vartheta ^{3}}+\eta \frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0,\quad 0<\mu \leq{1},\quad \vartheta \in [a,b],\quad \iota{>0.} </math>
25
|}
26
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
27
|}
28
29
When <math display="inline">\alpha =\eta=1</math> and <math display="inline">\gamma=0</math>, the equation proceeds to the Kuramoto-Sivashinsky equation [9], which was developed by Kuramoto and Sivashinsky during their investigation of phase turbulence in the Belousov-Zhabotinsky reaction. The Kuramoto-Sivashinsky equation is a fourth-order nonlinear partial differential equation that plays a significant role in the study of fluid dynamics, combustion, and other areas of physics and mathematics.
30
31
Due to its wide range of applications, it has garnered a great deal of interest in the search for analytical and numerical solutions. Thus, the solutions of the KS equation have been accomplished through a variety of techniques, such as the finite difference method [21-22], the Exponential Cubic BSpline Collocation Method [23], the Subequation Method [24], the Adomian Decomposition Method [25-26], the Double Reduction Theory [27], the Modified Kudrayshov Method [28], the Expfunction Method [29], the q-homotopy analysis transform method [30], the homotopy analysis method [31-32], a semianalytical method [33], the Reduced Differential Transform Method [34], and numerous other techniques.
32
33
In this current research, two methods for solving the fractional Kuramoto-Sivashisky equation were implemented. The first method is a semi-analytical iterative method. Temimi and Ansari have proposed this method, namely the TAM. They have lately presented this method to solve linear and nonlinear ODEs and PDEs [35-36]. Recent applications of this iterative method have yielded exact and approximate solutions to several problems. As opposed to the VIM, the TAM doesn't require any restricted hypotheses for non-linear terms, such as the ADM, the prerequisite for the referred to as Adomian polynomial, thereby averting extensive computational work and requiring no additional parameters. In addition, it avoided homotopy construction and the solution of the corresponding equations for algebra, as in HPM.  
34
35
The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.
36
37
==2 Preliminaries to FC==
38
39
Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39]
40
41
===Definition 1===
42
43
The Riemann-Liouville integral of a function <math display="inline">f(\iota )\in C_{\delta }(\delta \geq{-1)}</math> having fractional order <math display="inline">(\sigma{>0)}</math> is presented as follows
44
45
{| class="formulaSCP" style="width: 100%; text-align: left;" 
46
|-
47
| 
48
{| style="text-align: left; margin:auto;width: 100%;" 
49
|-
50
| style="text-align: center;" | <math>J^{\sigma }f(\iota )=\frac{1}{\Gamma (\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{\sigma{-1}}f(\upsilon )d\upsilon{.} </math>
51
|}
52
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
53
|}
54
55
===Definition 2 ===
56
57
The Caputo fractional order derivative of <math display="inline">f\in C_{-1}^{n}</math> is presented as
58
59
{| class="formulaSCP" style="width: 100%; text-align: left;" 
60
|-
61
| 
62
{| style="text-align: left; margin:auto;width: 100%;" 
63
|-
64
| style="text-align: center;" | <math>D_{\iota }^{\sigma }=\begin{cases}\frac{d^{n}f(\iota )}{d\iota ^{n}},\left(\sigma =n\in N\right),\\ \frac{1}{\Gamma (n-\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{(n-\sigma{-1)}}f^{(n)}(\upsilon )d\upsilon ,\left((n-1)<\sigma{<}n,n\in N\right.). \end{cases} </math>
65
|}
66
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
67
|}
68
69
===Definition 3===
70
71
The natural transform of <math display="inline">g(\iota )</math> is defined as [40-41]
72
73
{| class="formulaSCP" style="width: 100%; text-align: left;" 
74
|-
75
| 
76
{| style="text-align: left; margin:auto;width: 100%;" 
77
|-
78
| style="text-align: center;" | <math>N^{+}[g(\iota )]=Q(s,u)=\frac{1}{u}\int _{0}^{\infty}e ^{\frac{-s\iota }{u}}g(\iota )d(\iota );s,\iota{>0}, </math>
79
|}
80
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
81
|}
82
83
where <math display="inline">s</math> and <math display="inline">u</math> are the transform variables.
84
85
The inverse natural transform of a function is defined by
86
87
{| class="formulaSCP" style="width: 100%; text-align: left;" 
88
|-
89
| 
90
{| style="text-align: left; margin:auto;width: 100%;" 
91
|-
92
| style="text-align: center;" | <math>N^{-}[Q(s,u)]=g(\iota )=\frac{1}{2\pi i}\int _{p-i\infty}^{p+i\infty}e ^{\frac{-s\iota }{u}}Q(s,u)d(s), </math>
93
|}
94
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
95
|}
96
97
where <math display="inline">s</math> and <math display="inline">u</math> are the natural transform variables and <math display="inline">p</math> is a real constant and the integral is taken along <math display="inline">s=p</math> in the complex plane  <math display="inline">s=\vartheta{+}iy</math>.
98
99
===Definition 4===
100
101
Natural Transform of nth derivative If <math display="inline">g^{(n)}(\iota )</math> is the nth derivative of function <math display="inline">g(\iota )</math> is given by,
102
103
{| class="formulaSCP" style="width: 100%; text-align: left;" 
104
|-
105
| 
106
{| style="text-align: left; margin:auto;width: 100%;" 
107
|-
108
| style="text-align: center;" | <math>N[g^{(n)}(\iota )]=Q_{n}(s,u)=\frac{s^{n}}{u^{n}}Q(s,u)-\sum _{k=0}^{n-1}\frac{s^{n-(k+1)}}{u^{n-k}}g^{(k)}(0),n\geq{1.} </math>
109
|}
110
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
111
|}
112
113
==3 The fundamental ideas of two iterative approaches==
114
115
An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.
116
117
===3.1 Basic Procedure for the fractional TAM ===
118
119
The general nonlinear fractional partial differential equation is a mathematical equation that may be used to represent the essential concepts of the suggested technique as
120
121
<span id="eq-7"></span>
122
{| class="formulaSCP" style="width: 100%; text-align: left;" 
123
|-
124
| 
125
{| style="text-align: left; margin:auto;width: 100%;" 
126
|-
127
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)+\Phi \left(\omega (\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\;n-1<\sigma \leq n, </math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
130
|}
131
132
combined with the independent variable <math display="inline">\vartheta </math>, dependent variable <math display="inline">\iota </math>, unknown function <math display="inline">\omega (\vartheta ,\iota )</math> and boundary conditions
133
134
{| class="formulaSCP" style="width: 100%; text-align: left;" 
135
|-
136
| 
137
{| style="text-align: left; margin:auto;width: 100%;" 
138
|-
139
| style="text-align: center;" | <math> \mathcal{B}\left(\omega ,\frac{\partial \omega }{\partial \vartheta }\right)=0, </math>
140
|}
141
|}
142
143
where <math display="inline">\Upsilon =D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math> is the Caputo fractional derivative, <math display="inline">\Phi </math> is representing the generic differential operators, the continuous functions are shown in <math display="inline">w(\vartheta ,\iota )</math> and the boundary operator is represented by <math display="inline">\mathcal{B}</math>. The main request made here is for the differential operator <math display="inline">\Upsilon </math> , which is general. However, if necessary, we can combine a number of linear components with nonlinear terms.
144
145
The following describes how the suggested method operates. The starting condition is obtained by removing the nonlinear portion as
146
147
{| class="formulaSCP" style="width: 100%; text-align: left;" 
148
|-
149
| 
150
{| style="text-align: left; margin:auto;width: 100%;" 
151
|-
152
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{0}\left(\vartheta ,\iota \right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{0},\frac{\partial \omega _{0}}{\partial \vartheta }\right)=0. </math>
153
|}
154
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
155
|}
156
157
By resolving the following issues, the next approximations of solutions are produced:
158
159
{| class="formulaSCP" style="width: 100%; text-align: left;" 
160
|-
161
| 
162
{| style="text-align: left; margin:auto;width: 100%;" 
163
|-
164
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{1},\frac{\partial \omega _{1}}{\partial \vartheta }\right)=0. </math>
165
|}
166
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
167
|}
168
169
As a result, we have a simple iterative process for solving a group of issues
170
171
<span id="eq-10"></span>
172
{| class="formulaSCP" style="width: 100%; text-align: left;" 
173
|-
174
| 
175
{| style="text-align: left; margin:auto;width: 100%;" 
176
|-
177
| style="text-align: center;" | <math>D_{\iota }^{\alpha }\omega _{n+1}\left(\vartheta ,\iota \right)+\Phi \left(\omega _{n}(\vartheta ,\iota )\right) =  w(\vartheta ,\iota ),\quad \mathcal{B}\left(\omega _{n+1},\frac{\partial \omega _{n+1}}{\partial \vartheta }\right)=0. </math>
178
|}
179
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
180
|}
181
182
In this technique, it is crucial to remember that any of the <math display="inline">\omega _{n+1}\left(\vartheta ,\iota \right)</math> is individually a solution to the problem ([[#eq-7|7]]). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue ([[#eq-7|7]]) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as
183
184
<span id="eq-11"></span>
185
{| class="formulaSCP" style="width: 100%; text-align: left;" 
186
|-
187
| 
188
{| style="text-align: left; margin:auto;width: 100%;" 
189
|-
190
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptstyle {\scriptscriptstyle n\rightarrow \infty }}} {lim} \omega_{n} (\vartheta ,\iota{)}. </math>
191
|}
192
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
193
|}
194
195
===3.2 Basic Procedure for the fractional NDM===
196
197
The following examples demonstrate how the recommended approach is based on the theory and method for solving fractional nonlinear partial differential equations:
198
199
<span id="eq-12"></span>
200
{| class="formulaSCP" style="width: 100%; text-align: left;" 
201
|-
202
| 
203
{| style="text-align: left; margin:auto;width: 100%;" 
204
|-
205
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega \left(\vartheta ,\iota \right)+\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )  =  \hbar \left(\vartheta ,\iota \right),\;n-1<\sigma \leq n, </math>
206
|}
207
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
208
|}
209
210
with the initial condition
211
212
{| class="formulaSCP" style="width: 100%; text-align: left;" 
213
|-
214
| 
215
{| style="text-align: left; margin:auto;width: 100%;" 
216
|-
217
| style="text-align: center;" | <math>\omega \left(\vartheta ,0\right) =  v\left(\vartheta \right), </math>
218
|}
219
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
220
|}
221
222
where the Caputo operator of <math display="inline">\omega \left(\vartheta ,\iota \right)</math> is denoted by <math display="inline">D_{\iota }^{\sigma }=\frac{\partial ^{\sigma }}{\partial \iota ^{\sigma }}</math>, the linear function is denoted by <math display="inline">\mathcal{R}</math>, the non-linear function is denoted by <math display="inline">\mathcal{F}</math> and the source term is denoted by <math display="inline">\hbar (\vartheta ,\iota )</math>. Applying the NT to Eq. ([[#eq-12|12]]) and employing definition 5, we obtain
223
224
{| class="formulaSCP" style="width: 100%; text-align: left;" 
225
|-
226
| 
227
{| style="text-align: left; margin:auto;width: 100%;" 
228
|-
229
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[\omega \left(\vartheta ,\iota \right)\right] =  \frac{q^{\sigma }}{s^{\sigma }}\sum _{i=0}^{n-1}\frac{q^{i-\sigma }}{s^{i+1-\sigma }}\left[D^{i}\omega \left(\vartheta ,\iota \right)\right]_{\iota=0}+\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)\right]-\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )\right]. </math>
230
|}
231
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
232
|}
233
234
Applying the inverse NT to the previous equation, we get
235
236
{| class="formulaSCP" style="width: 100%; text-align: left;" 
237
|-
238
| 
239
{| style="text-align: left; margin:auto;width: 100%;" 
240
|-
241
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
242
|}
243
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
244
|}
245
246
<math display="inline">\mathcal{H}\left(\vartheta ,\iota \right)</math> exists based on the provided initial condition and nonhomogeneous term. Let's suppose that an infinite series solution has the form
247
248
{| class="formulaSCP" style="width: 100%; text-align: left;" 
249
|-
250
| 
251
{| style="text-align: left; margin:auto;width: 100%;" 
252
|-
253
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right)=\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right),\qquad \mathcal{F}\omega (\vartheta ,\iota )=\sum _{n=0}^{\infty}A_{n}, </math>
254
|}
255
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
256
|}
257
258
where <math display="inline">A_{n}</math> denotes the nonlinear term of <math display="inline">\mathcal{F}\omega (\vartheta ,\iota )</math>, then we get
259
260
{| class="formulaSCP" style="width: 100%; text-align: left;" 
261
|-
262
| 
263
{| style="text-align: left; margin:auto;width: 100%;" 
264
|-
265
| style="text-align: center;" | <math>\sum _{n=0}^{\infty}\omega _{n}\left(\vartheta ,\iota \right) =  \mathcal{H}\left(\vartheta ,\iota \right)+\mathbb{N}^{-}\left\{\frac{q^{\zeta }}{s^{\zeta }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)-\mathcal{R}\omega (\vartheta ,\iota )-\mathcal{F}\omega (\vartheta ,\iota )\right]\right\}. </math>
266
|}
267
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
268
|}
269
270
Ultimately, the analytical solutions are presented in the following form:
271
272
{| class="formulaSCP" style="width: 100%; text-align: left;" 
273
|-
274
| 
275
{| style="text-align: left; margin:auto;width: 100%;" 
276
|-
277
| style="text-align: center;" | <math>\omega \left(\vartheta ,\iota \right) =  \sum _{n=0}^{\infty} \omega_{n}\left(\vartheta ,\iota \right). </math>
278
|}
279
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
280
|}
281
282
==4 Numerical examples of the KS models==
283
284
This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.
285
286
===4.1 Example 1===
287
288
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
289
290
<span id="eq-19"></span>
291
{| class="formulaSCP" style="width: 100%; text-align: left;" 
292
|-
293
| 
294
{| style="text-align: left; margin:auto;width: 100%;" 
295
|-
296
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
299
|}
300
301
with initial condition
302
303
{| class="formulaSCP" style="width: 100%; text-align: left;" 
304
|-
305
| 
306
{| style="text-align: left; margin:auto;width: 100%;" 
307
|-
308
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
309
|}
310
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
311
|}
312
313
The two iterative approaches that have been suggested will be used to resolve this issue.
314
315
'''Solving the Example 1 by Tthe AM: '''
316
317
By using the fractional TAM by first formulating the problem as
318
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;width: 100%;" 
323
|-
324
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
325
|}
326
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
327
|}
328
329
The first problem that has to be resolved is
330
331
<span id="eq-22"></span>
332
{| class="formulaSCP" style="width: 100%; text-align: left;" 
333
|-
334
| 
335
{| style="text-align: left; margin:auto;width: 100%;" 
336
|-
337
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
338
|}
339
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
340
|}
341
342
The solution of Eq. ([[#eq-22|22]]) may be obtained by using a straightforward procedure, as shown below
343
344
{| class="formulaSCP" style="width: 100%; text-align: left;" 
345
|-
346
| 
347
{| style="text-align: left; margin:auto;width: 100%;" 
348
|-
349
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
350
|}
351
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
352
|}
353
354
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
355
356
{| class="formulaSCP" style="width: 100%; text-align: left;" 
357
|-
358
| 
359
{| style="text-align: left; margin:auto;width: 100%;" 
360
|-
361
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)] </math>
362
|}
363
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
364
|}
365
366
It is possible to compute the next iteration, and we have
367
368
<span id="eq-25"></span>
369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
370
|-
371
| 
372
{| style="text-align: left; margin:auto;width: 100%;" 
373
|-
374
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
375
|}
376
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
377
|}
378
379
Then, by integrating both sides of Eq. ([[#eq-25|25]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
380
381
{| class="formulaSCP" style="width: 100%; text-align: left;" 
382
|-
383
| 
384
{| style="text-align: left; margin:auto;width: 100%;" 
385
|-
386
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
387
|}
388
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
389
|}
390
391
The next iteration appears as
392
393
{| class="formulaSCP" style="width: 100%; text-align: left;" 
394
|-
395
| 
396
{| style="text-align: left; margin:auto;width: 100%;" 
397
|-
398
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta +\frac{15\tanh ^{3}(\kappa (\vartheta{-\eta}))-45\tanh (\kappa (\vartheta{-\eta}))}{19\sqrt{19}}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{4}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}</math>
399
|-
400
| style="text-align: center;" | <math>     \times \left(19\sqrt{19}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(15\left(152\sqrt{19}\kappa ^{3}-1\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))+76\sqrt{19}\kappa \left(1-16\kappa ^{2}\right)-30\right)\right) </math>
401
|}
402
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
403
|}
404
405
The following iteration is calculable and is provided as
406
407
<span id="eq-28"></span>
408
{| class="formulaSCP" style="width: 100%; text-align: left;" 
409
|-
410
| 
411
{| style="text-align: left; margin:auto;width: 100%;" 
412
|-
413
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
414
|}
415
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
416
|}
417
418
Then, by integrating both sides of Eq. ([[#eq-28|28]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
419
420
{| class="formulaSCP" style="width: 100%; text-align: left;" 
421
|-
422
| 
423
{| style="text-align: left; margin:auto;width: 100%;" 
424
|-
425
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
426
|}
427
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
428
|}
429
430
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-19|19]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
431
432
{| class="formulaSCP" style="width: 100%; text-align: left;" 
433
|-
434
| 
435
{| style="text-align: left; margin:auto;width: 100%;" 
436
|-
437
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
438
|}
439
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
440
|}
441
442
Here are some details on the exact solution to which the preceding approximate solution leads [30],
443
444
<span id="eq-31"></span>
445
{| class="formulaSCP" style="width: 100%; text-align: left;" 
446
|-
447
| 
448
{| style="text-align: left; margin:auto;width: 100%;" 
449
|-
450
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\zeta}\iota{-\eta})]-45\tanh[\kappa(\vartheta-\zeta\iota-\eta)] </math>
451
|}
452
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
453
|}
454
455
'''Solving the Example 1 by the DM: '''
456
457
Eq. ([[#eq-19|19]]) may be simplified by applying NT to it
458
459
{| class="formulaSCP" style="width: 100%; text-align: left;" 
460
|-
461
| 
462
{| style="text-align: left; margin:auto;width: 100%;" 
463
|-
464
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
465
|}
466
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
467
|}
468
469
The definition of the non-linear operator is
470
471
<span id="eq-33"></span>
472
{| class="formulaSCP" style="width: 100%; text-align: left;" 
473
|-
474
| 
475
{| style="text-align: left; margin:auto;width: 100%;" 
476
|-
477
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
478
|}
479
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
480
|}
481
482
When Eq. ([[#eq-33|33]]) is made simpler, we obtain
483
484
<span id="eq-34"></span>
485
{| class="formulaSCP" style="width: 100%; text-align: left;" 
486
|-
487
| 
488
{| style="text-align: left; margin:auto;width: 100%;" 
489
|-
490
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
491
|}
492
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
493
|}
494
495
Eq. ([[#eq-34|34]]) is transformed by inverse NT to give us
496
497
{| class="formulaSCP" style="width: 100%; text-align: left;" 
498
|-
499
| 
500
{| style="text-align: left; margin:auto;width: 100%;" 
501
|-
502
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }-\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
503
|}
504
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
505
|}
506
507
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
508
509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
510
|-
511
| 
512
{| style="text-align: left; margin:auto;width: 100%;" 
513
|-
514
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
517
|}
518
519
Using the NDM procedure, we get
520
521
{| class="formulaSCP" style="width: 100%; text-align: left;" 
522
|-
523
| 
524
{| style="text-align: left; margin:auto;width: 100%;" 
525
|-
526
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19\sqrt{19}}\tanh ^{3}[\kappa (\vartheta{-\eta})]-45\tanh[\kappa(\vartheta-\eta)], </math>
527
|}
528
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
529
|}
530
531
{| class="formulaSCP" style="width: 100%; text-align: left;" 
532
|-
533
| 
534
{| style="text-align: left; margin:auto;width: 100%;" 
535
|-
536
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  -\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{7}(\kappa (\vartheta{-\eta}))}{27436\sqrt{19}\Gamma (\sigma{+1)}}\biggl(\left(\left(11552\kappa ^{3}-722\kappa{+15}\sqrt{19}\right)\cosh (2\kappa (\vartheta{-\eta}))-31768\kappa ^{3}-722\kappa{+30}\sqrt{19}\right)</math>
537
|-
538
| style="text-align: center;" | <math>     \times{4}\sinh (\kappa (\vartheta{-\eta}))-1083\zeta \cosh (\kappa (\vartheta{-\eta}))-361\zeta \cosh (3\kappa (\vartheta{-\eta}))\biggr), </math>
539
|}
540
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
541
|}
542
543
{| class="formulaSCP" style="width: 100%; text-align: left;" 
544
|-
545
| 
546
{| style="text-align: left; margin:auto;width: 100%;" 
547
|-
548
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{45\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{11}(\kappa (\vartheta{-\eta}))}{39617584\Gamma (2\sigma{+1)}}\Bigl\{1444\zeta \left(4712\sqrt{19}\kappa ^{3}-152\sqrt{19}\kappa{+45}\right)\cosh (3\kappa (\vartheta{-\eta}))</math>
549
|-
550
| style="text-align: center;" | <math>     -21660\zeta \left(1216\sqrt{19}\kappa ^{3}+38\sqrt{19}\kappa{-27}\right)\cosh (\kappa (\vartheta{-\eta}))-108300\zeta \cosh (5\kappa (\vartheta{-\eta}))</math>
551
|-
552
| style="text-align: center;" | <math>     +8121056\sqrt{19}\zeta \kappa ^{3}\cosh (5\kappa (\vartheta{-\eta}))+109744\sqrt{19}\zeta \kappa \cosh (5\kappa (\vartheta{-\eta}))-21660\zeta \cosh (7\kappa (\vartheta{-\eta}))</math>
553
|-
554
| style="text-align: center;" | <math>     -877952\sqrt{19}\zeta \kappa ^{3}\cosh (7\kappa (\vartheta{-\eta}))++54872\sqrt{19}\zeta \kappa \cosh (7\kappa (\vartheta{-\eta}))-53100\sqrt{19}\sinh (\kappa (\vartheta{-\eta}))</math>
555
|-
556
| style="text-align: center;" | <math>     +469242240\kappa ^{3}\sinh (\kappa (\vartheta{-\eta}))-1097440\sqrt{19}\kappa ^{2}\sinh (\kappa (\vartheta{-\eta}))+1992720\kappa \sinh (\kappa (\vartheta{-\eta}))</math>
557
|-
558
| style="text-align: center;" | <math>     -48348816640\sqrt{19}\kappa ^{6}\sinh (\kappa (\vartheta{-\eta}))-215098240\sqrt{19}\kappa ^{4}\sinh (\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (\kappa (\vartheta{-\eta}))</math>
559
|-
560
| style="text-align: center;" | <math>     -1481544\sqrt{19}\kappa ^{2}\sinh (3\kappa (\vartheta{-\eta}))+1906080\kappa \sinh (3\kappa (\vartheta{-\eta}))-13500\sqrt{19}\sinh (3\kappa (\vartheta{-\eta}))</math>
561
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
562
|-
563
| style="text-align: center;" | <math>     -143545152\sqrt{19}\kappa ^{4}\sinh (3\kappa (\vartheta{-\eta}))-85600320\kappa ^{3}\sinh (3\kappa (\vartheta{-\eta}))+16385218176\sqrt{19}\kappa ^{6}\sinh (3\kappa (\vartheta{-\eta}))</math>
564
|-
565
| style="text-align: center;" | <math>     +61731\sqrt{19}\zeta ^{2}\sinh (3\kappa (\vartheta{-\eta}))-173280\kappa \sinh (5\kappa (\vartheta{-\eta}))+4500\sqrt{19}\sinh (5\kappa (\vartheta{-\eta}))</math>
566
|-
567
| style="text-align: center;" | <math>     +68041280\sqrt{19}\kappa ^{4}\sinh (5\kappa (\vartheta{-\eta}))-12822720\kappa ^{3}\sinh (5\kappa (\vartheta{-\eta}))-274360\sqrt{19}\kappa ^{2}\sinh (5\kappa (\vartheta{-\eta}))</math>
568
|-
569
| style="text-align: center;" | <math>     -1611041920\sqrt{19}\kappa ^{6}\sinh (5\kappa (\vartheta{-\eta}))+34295\sqrt{19}\zeta ^{2}\sinh (5\kappa (\vartheta{-\eta}))+900\sqrt{19}\sinh (7\kappa (\vartheta{-\eta}))</math>
570
|-
571
| style="text-align: center;" | <math>     +1386240\kappa ^{3}\sinh (7\kappa (\vartheta{-\eta}))+109744\sqrt{19}\kappa ^{2}\sinh (7\kappa (\vartheta{-\eta}))-86640\kappa \sinh (7\kappa (\vartheta{-\eta}))</math>
572
|-
573
| style="text-align: center;" | <math>     +28094464\sqrt{19}\kappa ^{6}\sinh (7\kappa (\vartheta{-\eta}))-3511808\sqrt{19}\kappa ^{4}\sinh (7\kappa (\vartheta{-\eta}))+6859\sqrt{19}\zeta ^{2}\sinh (7\kappa (\vartheta{-\eta}))\Bigr\}. </math>
574
|}
575
|}
576
577
And so on. The behavior of a collection of approximate solutions obtained in Figure 1 and Table 1.
578
579
<div id='img-1'></div>
580
<div id='img-1'></div>
581
<div id='img-1'></div>
582
<div id='img-1'></div>
583
<div id='img-1'></div>
584
<div id='img-1f'></div>
585
<div id='img-1'></div>
586
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
587
|-
588
|[[Image:Draft_Hagag_330916598-KS1-ex.png|232px|Exact solution of ω(ϑ,ι).]]
589
|[[Image:Draft_Hagag_330916598-KS1-NDM.png|232px|Approximate solution of ω(ϑ,ι).]]
590
|- style="text-align: center; font-size: 75%;"
591
| (1) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
592
| (1) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
593
|-
594
|[[Image:Draft_Hagag_330916598-KS1-error1.png|232px|Absolute error at ι=1.]]
595
|[[Image:Draft_Hagag_330916598-KS1-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
596
|- style="text-align: center; font-size: 75%;"
597
| (1) Absolute error at <math display="inline">\iota=1</math>.
598
| (1) Representation of the approximate solution with the exact solution.
599
|-
600
|[[Image:Draft_Hagag_330916598-KS1(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
601
|[[Image:Draft_Hagag_330916598-KS1-alpha.png|236px|The solution of the power series approaches the exact solution.]]
602
|- style="text-align: center; font-size: 75%;"
603
| (1) Comparative graphical simulation in the steady state.
604
| (f) The solution of the power series approaches the exact solution.
605
|- style="text-align: center; font-size: 75%;"
606
| colspan="2" | '''Figure 1:''' The behavior of a collection of approximate solutions obtained for case (1) at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
607
|}
608
609
610
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
611
|+ style="font-size: 75%;" |Table. 1 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-19|19]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
612
|-
613
| <math display="inline">\vartheta </math> 
614
| <math>\iota </math>
615
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
616
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
617
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30] 
618
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
619
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
620
|-
621
| rowspan='2' | 1
622
| 0.2 
623
| 2.80424E08 
624
| 2.48734E09 
625
| 2.80432E08 
626
| 2.14599E06 
627
| 2.67151E06
628
|-
629
| 0.4 
630
| 4.95147E07 
631
| 8.62662E08 
632
| 4.95160E07 
633
| 2.08915E06 
634
| 5.50393E06
635
|-
636
| 
637
| 0.6 
638
| 2.78302E06 
639
| 7.13064E07 
640
| 2.78309E06 
641
| 2.7345E06 
642
| 7.47041E06
643
|-
644
| 
645
| 0.8 
646
| 9.82780E06 
647
| 3.28572E06 
648
| 9.82802E06 
649
| 1.67288E05 
650
| 5.46055E06
651
|-
652
| 
653
| 1 
654
| 2.69887E05 
655
| 1.10169E05 
656
| 2.69893E05 
657
| 4.67056E05 
658
| 6.17336E06
659
|-
660
| rowspan='2' | 2
661
| 0.2 
662
| 1.78570E08 
663
| 1.58980E09 
664
| 1.78573E08 
665
| 1.35933E06 
666
| 1.69305E06
667
|-
668
| 0.4 
669
| 3.15442E07 
670
| 5.51676E08 
671
| 3.15448E07 
672
| 1.32002E06 
673
| 3.48849E06
674
|-
675
| 
676
| 0.6 
677
| 1.77395E06 
678
| 4.56307E07 
679
| 1.77397E06 
680
| 1.75053E06 
681
| 4.72985E06
682
|-
683
| 
684
| 0.8 
685
| 6.26867E06 
686
| 2.10428E06 
687
| 6.26876E06 
688
| 1.06596E05 
689
| 3.43118E06
690
|-
691
| 
692
| 1 
693
| 1.72293E05 
694
| 7.06240E06 
695
| 1.72296E05 
696
| 2.97593E05 
697
| 4.02031E06
698
|-
699
| rowspan='2' | 3
700
| 0.2 
701
| 1.13535E08 
702
| 1.01377E09 
703
| 1.13536E08 
704
| 8.60648E07 
705
| 1.07236E06
706
|-
707
| 0.4 
708
| 2.00629E07 
709
| 3.51942E-08 
710
| 2.00631E07 
711
| 8.34089E07 
712
| 2.20978E06
713
|-
714
| 
715
| 0.6 
716
| 1.12877E06 
717
| 2.91252E07 
718
| 1.12878E06 
719
| 1.11763E06 
720
| 2.99357E06
721
|-
722
| 
723
| 0.8 
724
| 3.99093E06 
725
| 1.34397E06 
726
| 1.99096E06 
727
| 6.78091E06 
728
| 2.15839E06
729
|-
730
| 
731
| 1 
732
| 1.09764E05 
733
| 4.51409E06 
734
| 1.09765E06 
735
| 1.89302E05 
736
| 2.60114E06
737
|-
738
| rowspan='2' | 4
739
| 0.2 
740
| 7.20971E09 
741
| 6.45271E-10 
742
| 7.20976E09 
743
| 5.44714E07 
744
| 6.78920E07
745
|-
746
| 0.4 
747
| 1.27440E07 
748
| 2.24089E08 
749
| 1.27441E07 
750
| 5.27063E07 
751
| 1.39914E06
752
|-
753
| 
754
| 0.6 
755
| 7.17241E07 
756
| 1.85523E07 
757
| 7.17246E07 
758
| 7.12053E07 
759
| 1.89411E06
760
|-
761
| 
762
| 0.8 
763
| 2.53701E06 
764
| 8.56512E07 
765
| 2.53702E06 
766
| 4.30781E06 
767
| 1.35897E06
768
|-
769
| 
770
| 1 
771
| 6.98135E06 
772
| 2.87858E06 
773
| 6.98138E06 
774
| 1.20257E05 
775
| 1.67448E06
776
|-
777
| rowspan='2' | 5
778
| 0.2 
779
| 4.57386E09 
780
| 4.10120E-10 
781
| 4.57388E09 
782
| 3.44656E07 
783
| 4.29680E07
784
|-
785
| 0.4 
786
| 8.08663E08 
787
| 1.42464E08 
788
| 8.08667E08 
789
| 3.33064E07 
790
| 8.85550E07
791
|-
792
| 
793
| 0.6 
794
| 4.55248E07 
795
| 1.17984E07 
796
| 4.55249E07 
797
| 4.52901E07 
798
| 1.19818E06
799
|-
800
| 
801
| 0.8 
802
| 1.61084E06 
803
| 5.44920E07 
804
| 3.61084E07 
805
| 2.73379E06 
806
| 8.56270E07
807
|-
808
| 
809
| 1 
810
| 4.43460E06 
811
| 1.83226E06 
812
| 4.43462E07 
813
| 7.63155E06 
814
| 1.07374E06
815
816
|}
817
818
===4.2 Example 2===
819
820
The following form can be used to represent the fractional Kuramoto-Sivashinsky equation
821
822
<span id="eq-40"></span>
823
{| class="formulaSCP" style="width: 100%; text-align: left;" 
824
|-
825
| 
826
{| style="text-align: left; margin:auto;width: 100%;" 
827
|-
828
| style="text-align: center;" | <math>D_{\iota }^{\sigma }\omega (\vartheta ,\iota )+\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}=0, </math>
829
|}
830
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
831
|}
832
833
with initial condition
834
835
{| class="formulaSCP" style="width: 100%; text-align: left;" 
836
|-
837
| 
838
{| style="text-align: left; margin:auto;width: 100%;" 
839
|-
840
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
841
|}
842
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
843
|}
844
845
The two iterative approaches that have been suggested will be used to resolve this issue.
846
847
'''Solving the Example 2 by the AM: '''
848
849
By using the fractional TAM by first formulating the problem as
850
851
{| class="formulaSCP" style="width: 100%; text-align: left;" 
852
|-
853
| 
854
{| style="text-align: left; margin:auto;width: 100%;" 
855
|-
856
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
857
|}
858
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
859
|}
860
861
The first problem that has to be resolved is
862
863
<span id="eq-43"></span>
864
{| class="formulaSCP" style="width: 100%; text-align: left;" 
865
|-
866
| 
867
{| style="text-align: left; margin:auto;width: 100%;" 
868
|-
869
| style="text-align: center;" | <math>\Upsilon \left(\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
870
|}
871
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
872
|}
873
874
The solution of Eq. ([[#eq-43|43]]) may be obtained by using a straightforward procedure, as shown below
875
876
{| class="formulaSCP" style="width: 100%; text-align: left;" 
877
|-
878
| 
879
{| style="text-align: left; margin:auto;width: 100%;" 
880
|-
881
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{0}(\vartheta ,\iota )\right)=0,\qquad \omega _{0}(\vartheta ,0)=\zeta{+\gamma}. </math>
882
|}
883
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
884
|}
885
886
As a result, using the fundamental characteristics of definition ([[#Definition 2 |2]]), we can derive the primary iteration as
887
888
{| class="formulaSCP" style="width: 100%; text-align: left;" 
889
|-
890
| 
891
{| style="text-align: left; margin:auto;width: 100%;" 
892
|-
893
| style="text-align: center;" | <math>\omega _{0}(\vartheta ,\iota )=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right). </math>
894
|}
895
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
896
|}
897
898
It is possible to compute the next iteration, and we have
899
900
<span id="eq-46"></span>
901
{| class="formulaSCP" style="width: 100%; text-align: left;" 
902
|-
903
| 
904
{| style="text-align: left; margin:auto;width: 100%;" 
905
|-
906
| style="text-align: center;" | <math>\Upsilon \left(\omega _{1}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{0}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
907
|}
908
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
909
|}
910
911
Then, by integrating both sides of Eq. ([[#eq-46|46]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
912
913
{| class="formulaSCP" style="width: 100%; text-align: left;" 
914
|-
915
| 
916
{| style="text-align: left; margin:auto;width: 100%;" 
917
|-
918
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{1}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{0}(\vartheta ,\iota )\frac{\partial \omega _{0}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega _{0}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{1}(\vartheta ,0)=\zeta{+\gamma}. </math>
919
|}
920
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
921
|}
922
923
The next iteration appears as
924
925
{| class="formulaSCP" style="width: 100%; text-align: left;" 
926
|-
927
| 
928
{| style="text-align: left; margin:auto;width: 100%;" 
929
|-
930
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \zeta{+\gamma}+\frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\biggl(16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
931
|-
932
| style="text-align: center;" | <math>     \times \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\biggr). </math>
933
|}
934
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
935
|}
936
937
The following iteration is calculable and is provided as
938
939
<span id="eq-49"></span>
940
{| class="formulaSCP" style="width: 100%; text-align: left;" 
941
|-
942
| 
943
{| style="text-align: left; margin:auto;width: 100%;" 
944
|-
945
| style="text-align: center;" | <math>\Upsilon \left(\omega _{2}\left(\vartheta ,\iota \right)\right)+\Phi \left(\omega _{1}(\vartheta ,\iota )\right)+w(\vartheta ,\iota )=0,\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
946
|}
947
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
948
|}
949
950
Then, by integrating both sides of Eq. ([[#eq-49|49]]) and using the fundamental characteristics of definition ([[#Definition 1|2]]), we obtain
951
952
{| class="formulaSCP" style="width: 100%; text-align: left;" 
953
|-
954
| 
955
{| style="text-align: left; margin:auto;width: 100%;" 
956
|-
957
| style="text-align: center;" | <math>I^{\sigma }\left(D_{\iota }^{\sigma }\omega _{2}(\vartheta ,\iota )\right)=-I^{\sigma }\left(\omega _{1}(\vartheta ,\iota )\frac{\partial \omega _{1}(\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial \omega _{1}^{2}(\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial \omega _{1}^{4}(\vartheta ,\iota )}{\partial \vartheta ^{4}}\right),\qquad \omega _{2}(\vartheta ,0)=\zeta{+\gamma}. </math>
958
|}
959
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
960
|}
961
962
Each repetition of the <math display="inline">\omega _{n}(\vartheta ,\iota )</math> represents a rough solution to Eq. ([[#eq-40|40]]) in accordance with Eq. ([[#eq-11|11]]), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as
963
964
{| class="formulaSCP" style="width: 100%; text-align: left;" 
965
|-
966
| 
967
{| style="text-align: left; margin:auto;width: 100%;" 
968
|-
969
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
970
|}
971
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
972
|}
973
974
Here are some details on the exact solution to which the preceding approximate solution leads [30],
975
976
<span id="eq-52"></span>
977
{| class="formulaSCP" style="width: 100%; text-align: left;" 
978
|-
979
| 
980
{| style="text-align: left; margin:auto;width: 100%;" 
981
|-
982
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\zeta}\iota{-\eta}))-9\tanh (\kappa (\vartheta{-\zeta}\iota{-\eta}))\right). </math>
983
|}
984
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
985
|}
986
987
'''Solving Example 2 by the NDM: '''
988
989
Eq. ([[#eq-40|40]]) may be simplified by applying NT to it
990
991
{| class="formulaSCP" style="width: 100%; text-align: left;" 
992
|-
993
| 
994
{| style="text-align: left; margin:auto;width: 100%;" 
995
|-
996
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[D_{\iota }^{\sigma }\omega (\vartheta ,\iota )\right]=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
997
|}
998
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
999
|}
1000
1001
The definition of the non-linear operator is
1002
1003
<span id="eq-54"></span>
1004
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1005
|-
1006
| 
1007
{| style="text-align: left; margin:auto;width: 100%;" 
1008
|-
1009
| style="text-align: center;" | <math>\frac{s^{\sigma }}{\omega ^{\sigma }}\mathbb{N}^{+}[\omega (\vartheta ,\iota )]-\sum _{k=0}^{n-1}\frac{s^{\sigma{-}(k+1)}}{\varrho ^{\sigma{-}k}}\left[D^{k}\omega \right]_{\iota=0}=-\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
1010
|}
1011
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
1012
|}
1013
1014
When Eq. ([[#eq-54|54]]) is made simpler, we obtain
1015
1016
<span id="eq-55"></span>
1017
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1018
|-
1019
| 
1020
{| style="text-align: left; margin:auto;width: 100%;" 
1021
|-
1022
| style="text-align: center;" | <math>\mathbb{N}^{+}[\omega (\vartheta ,\iota )]=\frac{1}{s}\left[\omega _{0}(\vartheta ,\iota )\right]-\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]. </math>
1023
|}
1024
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
1025
|}
1026
1027
Eq. ([[#eq-55|55]]) is transformed by inverse NT to give us
1028
1029
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1030
|-
1031
| 
1032
{| style="text-align: left; margin:auto;width: 100%;" 
1033
|-
1034
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )=\omega _{0}(\vartheta ,\iota )-\mathbb{N}^{-1}\left[\frac{\varrho ^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\omega \frac{\partial \omega }{\partial \vartheta }+\frac{\partial ^{2}\omega }{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega }{\partial \vartheta ^{4}}\right]\right]. </math>
1035
|}
1036
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
1037
|}
1038
1039
We may calculate the terms of the series by using <math display="inline">\omega _{0}(\vartheta ,\iota )</math> to solve the previous equation
1040
1041
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1042
|-
1043
| 
1044
{| style="text-align: left; margin:auto;width: 100%;" 
1045
|-
1046
| style="text-align: center;" | <math>\omega (\mathrm{\vartheta },\mathrm{\iota })=\sum _{\mathrm{n}=0}^{\infty }\mathrm{\omega }_{\mathrm{n}}(\mathrm{\vartheta },\mathrm{\iota })=\mathrm{\omega }_{0}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{1}(\mathrm{\vartheta },\mathrm{\iota })+\mathrm{\omega }_{2}(\mathrm{\vartheta },\mathrm{\iota })+\ldots  </math>
1047
|}
1048
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
1049
|}
1050
1051
Using the NDM procedure, we get
1052
1053
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1054
|-
1055
| 
1056
{| style="text-align: left; margin:auto;width: 100%;" 
1057
|-
1058
| style="text-align: center;" | <math>\omega (\vartheta ,0)=\zeta{+\gamma}=\zeta +\frac{15}{19}\sqrt{\frac{11}{19}}\left(11\tanh ^{3}(\kappa (\vartheta{-\eta}))-9\tanh (\kappa (\vartheta{-\eta}))\right), </math>
1059
|}
1060
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
1061
|}
1062
1063
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1064
|-
1065
| 
1066
{| style="text-align: left; margin:auto;width: 100%;" 
1067
|-
1068
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\Bigl\{16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
1069
|-
1070
| style="text-align: center;" | <math>     \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\Bigr\}, </math>
1071
|}
1072
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
1073
|}
1074
1075
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1076
|-
1077
| 
1078
{| style="text-align: left; margin:auto;width: 100%;" 
1079
|-
1080
| style="text-align: center;" | <math>\omega _{2}(\vartheta ,\iota )  =  \frac{90\kappa ^{2}\iota ^{2\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{2476099\Gamma (2\sigma{+1)}}\Bigl\{11552\zeta \left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)-8\tanh (\kappa (\vartheta{-\eta}))</math>
1081
|-
1082
| style="text-align: center;" | <math>     \times \left(\sqrt{209}\left(6859\zeta ^{2}+9900\right)+1444\kappa \left(4\kappa ^{2}+1\right)\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-330\right)\right)</math>
1083
|-
1084
| style="text-align: center;" | <math>     -2475\left(5776\left(1596\sqrt{209}\kappa ^{3}-1573\right)\kappa ^{3}+6655\sqrt{209}\right)\tanh (\kappa (\vartheta{-\eta}))\hbox{ sech}^{8}(\kappa (\vartheta{-\eta}))</math>
1085
|-
1086
| style="text-align: center;" | <math>     -15\hbox{ sech}^{6}(\kappa (\vartheta{-\eta}))\Bigl\{-4\left(361\kappa \left(16\kappa ^{2}\left(133\sqrt{209}\kappa \left(662\kappa ^{2}+11\right)-92686\right)-14641\right)+459195\sqrt{209}\right)</math>
1087
|-
1088
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))+27797\zeta \left(152\sqrt{209}\kappa ^{3}-121\right)\Bigr\}+20\hbox{ sech}^{4}(\kappa (\vartheta{-\eta}))\Bigl\{\tanh (\kappa (\vartheta{-\eta}))</math>
1089
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
1090
|-
1091
| style="text-align: center;" | <math>     -3\left(361\kappa \left(\kappa \left(8\kappa \left(19\sqrt{209}\kappa \left(3262\kappa ^{2}+155\right)-72897\right)+209\sqrt{209}\right)-16698\right)+228690\sqrt{209}\right)</math>
1092
|-
1093
| style="text-align: center;" | <math>     +361\zeta \left(19\sqrt{209}\kappa \left(620\kappa ^{2}+11\right)-10527\right)\Bigr\}+2\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))\Bigl\{-1444\zeta \left(76\sqrt{209}\kappa \left(118\kappa ^{2}+7\right)-10065\right)</math>
1094
|-
1095
| style="text-align: center;" | <math>     +11\sqrt{209}\left(6859\zeta ^{2}+96300\right)+5776\kappa \left(8\left(19\sqrt{209}\kappa \left(478\kappa ^{2}+59\right)-13695\right)\kappa ^{2}+266\sqrt{209}\kappa{-8085}\right)</math>
1096
|-
1097
| style="text-align: center;" | <math>     \times \tanh (\kappa (\vartheta{-\eta}))\Bigr\}\Bigr\}. </math>
1098
|}
1099
|}
1100
1101
And so on. The behavior of a collection of approximate solutions obtained in Figure 2 and Table 2.
1102
1103
1104
<div id='img-2'></div>
1105
<div id='img-2'></div>
1106
<div id='img-2'></div>
1107
<div id='img-2'></div>
1108
<div id='img-2'></div>
1109
<div id='img-2f'></div>
1110
<div id='img-2'></div>
1111
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1112
|-
1113
|[[Image:Draft_Hagag_330916598-KS2-ex.png|232px|Exact solution of ω(ϑ,ι).]]
1114
|[[Image:Draft_Hagag_330916598-KS2-app.png|232px|Approximate solution of ω(ϑ,ι).]]
1115
|- style="text-align: center; font-size: 75%;"
1116
| (2) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
1117
| (2) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
1118
|-
1119
|[[Image:Draft_Hagag_330916598-KS2-error.png|232px|Absolute error at ι=1.]]
1120
|[[Image:Draft_Hagag_330916598-KS2-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
1121
|- style="text-align: center; font-size: 75%;"
1122
| (2) Absolute error at <math display="inline">\iota=1</math>.
1123
| (2) Representation of the approximate solution with the exact solution.
1124
|-
1125
|[[Image:Draft_Hagag_330916598-KS2(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
1126
|[[Image:Draft_Hagag_330916598-KS2-alpha.png|236px|The solution of the power series approaches the exact solution.]]
1127
|- style="text-align: center; font-size: 75%;"
1128
| (2) Comparative graphical simulation in the steady state.
1129
| (f) The solution of the power series approaches the exact solution.
1130
|- style="text-align: center; font-size: 75%;"
1131
| colspan="2" | '''Figure 2:''' The behavior of a collection of approximate solutions obtained for case (2) at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
1132
|}
1133
1134
1135
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1136
|+ style="font-size: 75%;" |Table. 2 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-40|40]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
1137
|-
1138
| <math display="inline">\vartheta </math> 
1139
| <math>\iota </math>
1140
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
1141
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
1142
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30] 
1143
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
1144
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
1145
|-
1146
| rowspan='2' | 1
1147
| 0.2 
1148
| 6.63085E09 
1149
| 6.63085E09 
1150
| 2.80432E08 
1151
| 1.96076E08 
1152
| 1.96076E08
1153
|-
1154
| 0.4 
1155
| 6.64967E08 
1156
| 6.64967E08 
1157
| 4.95160E07 
1158
| 1.38124E08 
1159
| 1.38124E08
1160
|-
1161
| 
1162
| 0.6 
1163
| 2.89030E07 
1164
| 2.89030E07 
1165
| 2.78309E06 
1166
| 2.11347E07 
1167
| 2.11347E07
1168
|-
1169
| 
1170
| 0.8 
1171
| 9.08435E07 
1172
| 9.08435E07 
1173
| 9.82802E06 
1174
| 8.09626E07 
1175
| 8.09626E07
1176
|-
1177
| 
1178
| 1 
1179
| 2.42595E06 
1180
| 2.42595E06 
1181
| 2.69893E05 
1182
| 2.31168E06 
1183
| 2.31168E06
1184
|-
1185
| rowspan='2' | 2
1186
| 0.2 
1187
| 3.09828E09 
1188
| 3.09828E09 
1189
| 1.78573E08 
1190
| 9.16171E09 
1191
| 9.16170E09
1192
|-
1193
| 0.4 
1194
| 3.10707E08 
1195
| 3.10708E08 
1196
| 3.15448E07 
1197
| 6.45387E09 
1198
| 6.45387E09
1199
|-
1200
| 
1201
| 0.6 
1202
| 1.35050E07 
1203
| 1.35050E07 
1204
| 1.77397E06 
1205
| 9.87523E08 
1206
| 9.87523E08
1207
|-
1208
| 
1209
| 0.8 
1210
| 4.24469E07 
1211
| 4.24469E07 
1212
| 6.26876E06 
1213
| 3.78300E07 
1214
| 3.78300E07
1215
|-
1216
| 
1217
| 1 
1218
| 1.13353E06 
1219
| 1.13353E06 
1220
| 1.72296E05 
1221
| 1.08014E06 
1222
| 1.08014E06
1223
|-
1224
| rowspan='2' | 3
1225
| 0.2 
1226
| 1.44768E09 
1227
| 1.44768E09 
1228
| 1.13536E08 
1229
| 4.28083E09 
1230
| 4.28083E09
1231
|-
1232
| 0.4 
1233
| 1.45179E08 
1234
| 1.45179E08 
1235
| 2.00631E07 
1236
| 3.01559E09 
1237
| 3.01559E09
1238
|-
1239
| 
1240
| 0.6 
1241
| 6.31024E08 
1242
| 6.31024E08 
1243
| 1.12878E06 
1244
| 4.61423E08 
1245
| 4.61423E08
1246
|-
1247
| 
1248
| 0.8 
1249
| 1.98334E07 
1250
| 1.98334E07 
1251
| 1.99096E06 
1252
| 1.76761E07 
1253
| 1.76761E07
1254
|-
1255
| 
1256
| 1 
1257
| 5.29645E07 
1258
| 5.29645E07 
1259
| 1.09765E06 
1260
| 5.04697E07 
1261
| 5.04697E07
1262
|-
1263
| rowspan='2' | 4
1264
| 0.2 
1265
| 6.76425E10 
1266
| 6.76430E10 
1267
| 7.20976E09 
1268
| 2.00023E09 
1269
| 2.00023E09
1270
|-
1271
| 0.4 
1272
| 6.78351E09 
1273
| 6.78351E09 
1274
| 1.27441E07 
1275
| 1.40904E09 
1276
| 1.40904E09
1277
|-
1278
| 
1279
| 0.6 
1280
| 2.94847E08 
1281
| 2.94848E08 
1282
| 7.17246E07 
1283
| 2.15601E08 
1284
| 2.15601E08
1285
|-
1286
| 
1287
| 0.8 
1288
| 9.26720E08 
1289
| 9.26720E08 
1290
| 2.53702E06 
1291
| 8.25922E08 
1292
| 8.25922E08
1293
|-
1294
| 
1295
| 1 
1296
| 2.47478E07 
1297
| 2.47478E07 
1298
| 6.98138E06 
1299
| 2.35821E07 
1300
| 2.35821E07
1301
|-
1302
| rowspan='2' | 5
1303
| 0.2 
1304
| 3.16056E10 
1305
| 3.16065E10 
1306
| 4.57388E09 
1307
| 9.34614E10 
1308
| 9.34609E10
1309
|-
1310
| 0.4 
1311
| 3.16960E09 
1312
| 3.16961E09 
1313
| 8.08667E08 
1314
| 6.58372E10 
1315
| 6.58377E10
1316
|-
1317
| 
1318
| 0.6 
1319
| 1.37768E08 
1320
| 1.37768E08 
1321
| 4.55249E07 
1322
| 1.00740E08 
1323
| 1.00740E08
1324
|-
1325
| 
1326
| 0.8 
1327
| 4.33012E08 
1328
| 4.33012E08 
1329
| 3.61084E07 
1330
| 3.85914E08 
1331
| 3.85914E08
1332
|-
1333
| 
1334
| 1 
1335
| 1.15635E07 
1336
| 1.15635E07 
1337
| 4.43462E07 
1338
| 1.10188E07 
1339
| 1.10188E07
1340
1341
|}
1342
1343
==5 Numerical results and discussion==
1344
1345
In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\omega _{n}</math> and fractional order <math display="inline">\sigma </math> using two methods: TAM and NDM. In Example 1, Fig. 1(a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). Fig. 1(d) shows the <math display="inline">\omega _{n}</math>-curves for the FKS equation at <math display="inline">\iota=0.1</math> and shows their convergence. In addition, in Fig. 1(e), we examined the precise solution and TAM for various values of n at <math display="inline">\iota=0.1</math>, and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in Fig. 1(f), values less than one increase the convergence between the exact solution and TAM. In Fig. 2, we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in Fig. 2 (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\sigma=1,0.9</math> were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.
1346
1347
==6 Conclusion==
1348
1349
In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.
1350
1351
'''Conflict of Interest:''' The author declare that there is no Conflict of Interest. 
1352
1353
'''Acknowledgments:''' Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R215), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
1354
1355
===BIBLIOGRAPHY===
1356
1357
<div id="cite-1"></div>
1358
'''[1]''' Miller, K.S. and Ross, B., 1993. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore.
1359
1360
<div id="cite-2"></div>
1361
'''[2]''' Podlubny, I., 1999. Fractional differential equations, mathematics in science and engineering, Academic Press, San Diego.
1362
1363
<div id="cite-3"></div>
1364
'''[3]''' Butzer, P.L. and Westphal, U., 2000. An introduction to fractional calculus. In: Hilfer, R., Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore City (pp. 1-85).
1365
1366
<div id="cite-4"></div>
1367
'''[4]''' Wang, Z., Huang, X., Li, Y.X. and Song, X.N., 2013. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), p.010504.
1368
1369
<div id="cite-5"></div>
1370
'''[5]''' Oldham, K. and Spanier, J., 1974. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Academic Press, New York.
1371
1372
<div id="cite-6"></div>
1373
'''[6]''' Hilfer, R. ed., 2000. Applications of fractional calculus in physics. World scientific.https://api.semanticscholar.org/CorpusID:117406670.
1374
1375
<div id="cite-7"></div>
1376
'''[7]''' Torvik, P.J. and Bagley, R.L., 1984. On the appearance of the fractional derivative in the behavior of real materials, vol. 51, no. 2, pp. 294-298.
1377
1378
<div id="cite-8"></div>
1379
'''[8]''' Mainardi, F., 1996. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 7(9), pp.1461-1477.
1380
1381
<div id="cite-9"></div>
1382
'''[9]''' Li, C., Chen, G. and Zhao, S., 2004. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1), pp.65-68.
1383
1384
<div id="cite-10"></div>
1385
'''[10]''' Ellahi, R., Alamri, S.Z., Basit, A. and Majeed, A., 2018. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), pp.476-482.
1386
1387
<div id="cite-11"></div>
1388
'''[11]''' Rademacher, J.D. and Wittenberg, R.W., 2006. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation, J. Comput. Nonlinear Dynam., 1(4):336-347.
1389
1390
<div id="cite-12"></div>
1391
'''[12]''' Zeeshan, A., Hussain, F., Ellahi, R. and Vafai, K., 2019. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, p.110898.
1392
1393
<div id="cite-13"></div>
1394
'''[13]''' Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R., 2019. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080.
1395
1396
<div id="cite-14"></div>
1397
'''[14]''' Prakash, J., Tripathi, D., Tiwari, A.K., Sait, S.M. and Ellahi, R., 2019. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7), p.868.
1398
1399
<div id="cite-15"></div>
1400
'''[15]''' Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M., 2019. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560.
1401
1402
<div id="cite-16"></div>
1403
'''[16]''' Conte, R., 2003. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations: Lectures Given at the CIME Summer School Held in Cetraro, Italy, September 5-12, 1999 (pp. 1-83). Berlin, Heidelberg: Springer Berlin Heidelberg.
1404
1405
<div id="cite-17"></div>
1406
'''[17]''' Kuramoto, Y. and Tsuzuki, T., 1976. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2), pp.356-369.
1407
1408
<div id="cite-18"></div>
1409
'''[18]''' Tadmor, E., 1986. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4), pp.884-893.
1410
1411
<div id="cite-19"></div>
1412
'''[19]''' Sivashinsky, G.I., 1983. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1), pp.179-199.
1413
1414
<div id="cite-20"></div>
1415
'''[20]''' Hooper, A.P. and Grimshaw, R., 1985. Nonlinear instability at the interface between two viscous fluids. The Physics of fluids, 28(1), pp.37-45.
1416
1417
<div id="cite-21"></div>
1418
'''[21]''' Akrivis, G. and Smyrlis, Y.S., 2004. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied numerical mathematics, 51(2-3), pp.151-169.
1419
1420
<div id="cite-22"></div>
1421
'''[22]''' Akrivis, G.D., 1992. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63, pp.1-11.
1422
1423
<div id="cite-23"></div>
1424
'''[23]''' Ersoy, O. and Dag, I., 2016. The Exponential Cubic B-Spline Collocation Method for the Kuramoto-Sivashinsky Equation. Filomat, 30(3), pp.853-861.
1425
1426
<div id="cite-24"></div>
1427
'''[24]''' Rezazadeh, H. and Ziabarya, B.P., 2016. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3), pp.106- 109.
1428
1429
<div id="cite-25"></div>
1430
'''[25]''' Manaa, S.A., Easif, F.H. and Yousif, M.A., 2014. Adomian Decomposition Method for Solving the Kuramoto-Sivashinsky Equation, IOSR Journal of Mathematics, 10:08-12.
1431
1432
<div id="cite-26"></div>
1433
'''[26]''' Kulkarni, S., Takale, K. and Gaikwad, S., 2020. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3, 2020), pp.1078-1084.
1434
1435
<div id="cite-27"></div>
1436
'''[27]''' Okeke, J.E., Okoli, O.C., Obi, T.A. and Ujumadu, R.N., 2022. New Exact Solution of a Class of Kuramoto Sivashinsky (KS) Equations using Double Reduction Theory. 7:477-487.
1437
1438
<div id="cite-28"></div>
1439
'''[28]''' Kilicman, A. and Silambarasan, R., 2018. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10), p.527.
1440
1441
<div id="cite-29"></div>
1442
'''[29]''' Noor, M.A., Mohyud-Din, S.T. and Waheed, A., 2009. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29, pp.1-13.
1443
1444
<div id="cite-30"></div>
1445
'''[30]''' Veeresha, P. and Prakasha, D.G., 2021. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2), p.33.
1446
1447
<div id="cite-31"></div>
1448
'''[31]''' Abbasbandy, S., 2008. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52, pp.35-40.
1449
1450
<div id="cite-32"></div>
1451
'''[32]''' Kurulay, M., Secer, A. and Akinlar, M.A., 2013. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1), pp.267-271.
1452
1453
<div id="cite-33"></div>
1454
'''[33]''' Shah, R., Khan, H., Baleanu, D., Kumam, P. and Arif, M., 2020. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1), pp.402-411.
1455
1456
<div id="cite-34"></div>
1457
'''[34]''' Acan, O. and Keskin, Y., 2015, March. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings (Vol. 1648, No. 1, p. 470003). AIP Publishing LLC.
1458
1459
<div id="cite-35"></div>
1460
'''[35]''' Temimi, H. and Ansari, A.R., 2011. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2), pp.203-210.
1461
1462
<div id="cite-36"></div>
1463
'''[36]''' Temimi, H. and Ansari, A.R., 2011. A new iterative technique for solving nonlinear second order multi-point boundary value problems. Applied Mathematics and Computation, 218(4), pp.1457-1466.
1464
1465
<div id="cite-37"></div>
1466
'''[37]''' Rawashdeh, M.S., 2017. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7), pp.2362-2376.
1467
1468
<div id="cite-38"></div>
1469
'''[38]''' Liouville, J., 1832. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. 9:373-391.
1470
1471
<div id="cite-39"></div>
1472
'''[39]''' Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., 2006. Theory and applications of fractional differential equations, elsevier, 204:1-523.
1473
1474
<div id="cite-40"></div>
1475
'''[40]''' Khan, Z.H. and Khan, W.A., 2008. N-transform properties and applications. NUST journal of engineering sciences, 1(1), pp.127-133.
1476
1477
<div id="cite-41"></div>
1478
'''[41]''' Belgacem, F.B.M. and Silambarasan, R., 2012, November. Advances in the natural transform. In AIP conference proceedings (Vol. 1493, No. 1, pp. 106-110). American Institute of Physics.
1479

Return to Hagag 2023a.

Back to Top