You do not have permission to edit this page, for the following reason:
You can view and copy the source of this page.
==Abstract==
Debris flows overriding steep valleys can cause a significant decrease in bed friction resistance due to undrained excess pore water pressure, leading to an exponential increase in both destructiveness and volume. This study develops a two-phase numerical model based on Smoothed Particle Hydrodynamics to simulate the progressive entrainment behavior of debris flow accurately. The fluid and bed-sediment materials are modeled using the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou (HBP) constitutive model. The mass erosion behavior of debris flow is achieved and augmented by incorporating the Drucker-Prager (DP) softening model, which accounts for variations in the pore water pressure ratio across different saturation states. A straightforward phase-change approach is implemented according to the mutation of effective viscosity to prevent any minute displacements of viscoplastic materials when subjected to steep inclinations. The multi-phase model has been compared with the large scale flume experiments conducted by the United States Geological Survey. The 3-D numerical results obtained from the rigid bed, dry and wet erodible bed exhibit a good agreement with the experimental data, encompassing flow momentum feedback and erosion patterns. This paper initially attempts to simulate the entrainment of multiple phases in a steep valley by incorporating viscoplastic flow.
== Full Paper ==
<pdf>Media:Draft_Sanchez Pinedo_204421066pap_177.pdf</pdf>
Return to Ma et al 2023a.