You do not have permission to edit this page, for the following reason:
You can view and copy the source of this page.
== Abstract ==
The vision of self-driving networks integrates network measurements with network control. Processing data for each of the tasks comprising network control separately might be prohibitive due to the large volume and waste of computational resources. In this work we make the case of using the Weighted Stochastic Block Model (WSBM), a probabilistic model, to learn a task independent representation. In particular, we consider a case study of real-world IP-to-IP communication. The learned representation provides higher level-features for traffic engineering, anomaly detection, or other tasks, and reduces their computational effort. We find that the WSBM is able to accurately model traffic and structure of communication in the considered trace.
== Original document ==
The different versions of the original document can be found in:
* [http://dx.doi.org/10.1145/3234200.3234245 http://dx.doi.org/10.1145/3234200.3234245] under the license http://www.acm.org/publications/policies/copyright_policy#Background
* [http://mediatum.ub.tum.de/doc/1449149/document.pdf http://mediatum.ub.tum.de/doc/1449149/document.pdf]
* [http://dl.acm.org/ft_gateway.cfm?id=3234245&ftid=1992971&dwn=1 http://dl.acm.org/ft_gateway.cfm?id=3234245&ftid=1992971&dwn=1],
: [http://dx.doi.org/10.1145/3234200.3234245 http://dx.doi.org/10.1145/3234200.3234245] under the license http://www.acm.org/publications/policies/copyright_policy#Background
* [http://mediatum.ub.tum.de/node?id=1449149 http://mediatum.ub.tum.de/node?id=1449149],
: [http://mediatum.ub.tum.de/doc/1449149/document.pdf http://mediatum.ub.tum.de/doc/1449149/document.pdf],
: [http://dx.doi.org/10.1145/3234200.3234245 http://dx.doi.org/10.1145/3234200.3234245]
* [https://dblp.uni-trier.de/db/conf/sigcomm/p2018.html#KalmbachGZBK018 https://dblp.uni-trier.de/db/conf/sigcomm/p2018.html#KalmbachGZBK018],
: [https://mediatum.ub.tum.de/1449149 https://mediatum.ub.tum.de/1449149],
: [https://academic.microsoft.com/#/detail/2885631993 https://academic.microsoft.com/#/detail/2885631993]
Return to Zerwas et al 2018a.
Published on 01/01/2018
Volume 2018, 2018
DOI: 10.1145/3234200.3234245
Licence: Other
Are you one of the authors of this document?