You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
==A New Method of Satellite Radar Altimeter Waveform Retracking Based on Waveform Derivative ==
5
6
Zhen Li<sup>1</sup>, Xin Liu<sup>12</sup>, Jinyun Guo<sup>1</sup>, Jiajia Yuan<sup>1</sup>, Yupeng Niu<sup>1</sup>, Bing Ji<sup>3</sup>
7
8
1 College of Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
9
10
2 corresponding author: [mailto:xinliu1969@126.com xinliu1969@126.com]
11
12
3 Department of Navigation, Naval University of Engineering, Wuhan, 430022, Hubei, China
13
-->
14
==Abstract==
15
16
Waveform retracking for precise sea surface height (SSH) is an important method to improve the quality of satellite altimeter data. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical methods, we effort to provide a comprehensive method for processing the waveforms over the open ocean and coastal area. The new retracking method that uses the maximum slope of leading edge to determine midpoint is proposed, the midpoint is determined by zero of second derivative of theoretical model. The unknown parameters are estimated based on the function fitting. Then combined with the advantage of empirical method, the leading edge midpoint is redetermined by interpolating the estimated midpoint on the measured waveform. The new method is validated by comparison with crossover discrepancies, geoid heights and tide gauges. The RMS of crossover discrepancy obtained by new method is 0.107 m, which is smaller than 0.192 m, 0.124 m, 0.121 m, 0.114 m, 0.112 m obtained by Ice-1,Threshold 50%, 5-β, MLE3 and MLE4 retrackers. The STD and improvement percentage of the differences between SSHs obtained by new method and geoid heights are also better than the results of single kind of retracker. Comparison with tide gauge records, the STDs difference of height anomaly obtained by new method are 0.183 m and 0.269 m at different regions, which are smaller than 0.239 m, 0.220 m, 0.195 m and 0.303 m, 0.278 m, 0.272 m obtained by Ice-1, MLE4 and Threshold 50% retrackers, respectively. Therefore, the new method can recover more reliable SSH in the open ocean and coastal area.
17
18
'''Keywords''': Satellite altimeter, waveform retracking, derivative, leading edge slope, crossover discrepancy, tide gauge
19
20
==1. Introduction==
21
22
Satellite altimetry, one of the most powerful technique of remote sensing in measuring ocean surfaces, obtains the sea surface height (SSH), the significant wave height and the backscatter coefficient. A large amount of ocean data has been collected, which provides basic information for oceanography, marine geodesy, geophysics etc. [1-6]. However, in order to get more reliable SSH, it is necessary to make corrections to altimeter data. Unfortunately, although great progress has been made in geophysical and media corrections in the last decade, it is still a challenge for obtaining accurate SSH, especially for processing the radar echo waveform. The echo signal is mainly affected by sea surface condition, bright target and contaminated by land or island. The echo waveform does not conform to the theoretical model, resulting in reduction of range accuracy [7-11].
23
24
In order to improve the accuracy of SSH and the quality of altimeter data, it is necessary to retrack the interfered echo waveform in the open ocean and coastal area. Several retrackers have been developed and are divided into two kinds [12-13]: the empirical statistical method and the function-fitting method, which are based on either full-waveform or sub-waveform. The retracking method based on empirical statistics is an algorithm that relies on empirical formulas, such as Threshold [14] algorithm. This method is of high adaptability and stability, the result of retracking is determined based on the emprical formula. Function fitting algorithm, such as 5-β algorithm [15], selects function form to fit the measured waveform. The algorithm has reliable accuracy, and has clear physical meaning and interpretation. The sub-waveform is defined as the partial waveform by processing multiple leading edges. The most important of the algorithm is the judgment and selection of sub-waveform [16-18], such as ALES [19] algorithm, the sub-waveform is adapting the width of the estimation window according to the significant wave height. For a single kind of retracker, it has certain limitations, for example, the emprical method is lack of physical interpretation and the function fitting method is susceptible to the influence of waveform [20-23]. Due to the complexity of the echo waveform, the accuracy of retracking method is different in the open ocean and coastal area [13]. Therefore, the waveform retracking method need to be further studied.
25
26
According to theoretical analysis and''' '''practical application of echo waveform, the method based on function fitting is still the most rigorous retracking method [19,22]. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical retrackers, we effort to provide a comprehensive waveform retracking method. We expect it can be used to process simultaneously waveforms over the open ocean and coastal area with higher accuracy. The theoretical echo model [24] provides a theoretical basis for waveform research. Based on the analysis of echo power principle and theoretical echo waveform, this paper proposes new methods to determine the leading edge midpoint by using the maximum slope of waveform leading edge. The theoretical echo model is used to derive the first and second derivative function of waveform. The leading edge midpoint is determined by the second derivative zero point. In order to be combined with the measured waveform, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. In the open ocean, through comparison with the crossover discrepancy of SSH and the differece between the retracked SSHs and geoid heights, the accuracy of the new methods is verified. Also, through comparison with the tide gauge records, the adaptable of the new methods is verified by analysis of several retracking methods in the coastal area.
27
28
<span id='_Hlk16842273'></span>
29
==2. Data==
30
31
<span id='_Hlk16842922'></span>
32
===2.1 Satellite radar altimetry===
33
34
In this study, we used the Jason-2 Sensor Geophysical Data Records (SGDRs) within the area of the South China Sea (0 °- 30 ° N, 105 °-125 ° E), which are released by AVISO (Archiving Validation and Interpretation of Satellite Oceanographic data, [http://www.aviso.altimetry.fr/ http://www.aviso.altimetry.fr/]). The SGDRs include waveforms and the state of the art geophysical and environment corrections for altimeter measurements [25]. These altimeter data of passes 012, 051, 088, 114, 153, 190 and 229 were processed from cycles 001 to 200 over the South China Sea (SCS). The passes 051, 229 and 153 are the ascending passes among those passes, and the others are the descending passes. These pass ground tracks are shown in [[#img-1|Figure 1]]. Based on the range correction of waveform retracking and the geophysical corrections extracted from SGDRs, the altimetry-derived SSHs are computed.
35
36
<div id='img-1'></div>
37
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 45%;"
38
|-
39
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image1.png|294px]]
40
|- style="text-align: center; font-size: 75%;"
41
| colspan="1" style="padding:10px;"| '''Figure 1'''. Ground tracks of Jason-2 satellite over the SCS and the two tide gauges (red point represent the tide gauge)
42
|}
43
44
===2.2 In situ tide gauge records===
45
46
<span id='_Hlk16841203'></span><span id='OLE_LINK4'></span><span id='_Hlk16532120'></span>To assess the performance of the new waveform retracking corrected SSH in the coastal area, we compared two tide gauge records in this region. The Quarry Bay tide gauge (QBTG) is located at ~114.22°E, ~22.28°N, near the northern coast of the Hong Kong Island. The tide gauge is located near pass 153 ground track of Jason-2. The Kaohsiung tide gauge (KaohTG) is located at ~120.29°E, ~22.62°N in Taiwan Island. The tide gauge is located near pass 051 ground track of Jason-2. The two tide gauges are shown in [[#img-1|Figure 1]]. The hourly tide gauge records, referred to the WGS84 reference ellipsoid, were available from the Sea Level Center of the University of Hawaii ([https://uhslc.soest.hawaii.edu https://uhslc.soest.hawaii.edu]). We obtained the hourly data from July 2008 to December 2013 for QBTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 200, and the hourly data from July 2008 to July 2013 for KaohTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 186. The altimetry-derived SSHs were determined close to the tide gauge stations. Altimetry-derived SSHs using several waveform retracking methods were compared to the stable tide gauge records.
47
48
==3. Methodology==
49
50
===3.1 Retracking principle of waveform derivative===
51
52
The SSH within the altimeter footprint is approximately symmetric with respect to a certain mean sea level in most cases. The leading edge of echo waveform is an odd function relative to leading edge midpoint [26-27]. The slope of waveform leading edge reaches the maximum value at the midpoint, and the maximum value of the leading edge slope can be derived when the second derivative is equal to zero. The model of echo waveform [19,28] can be expressed as,
53
54
{| class="formulaSCP" style="width: 100%; text-align: center;" 
55
|-
56
| 
57
{| style="text-align: center; margin:auto;" 
58
|-
59
|style="text-align: center;" |  <math>{W}(t)=A_{p} {exp}(-v)(1+{erf}(u))</math>
60
|}
61
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
62
|}
63
64
where
65
66
<math>{\it v}={\it a}{ [(t}-{ t}_{{ 0}} { )}-\frac{{ a}}{{ 2}} { \sigma }_{{ c}}^{{ 2}} { ]}</math>
67
68
<math>{\it u}=\frac{{ (t}-{ t}_{{ 0}} { )}-{ a}\times { \sigma }_{{ c}}^{{ 2}} }{\sqrt{{ 2}} { \sigma }_{{ c}} }</math>
69
70
<math>{\it a}={\it \alpha }-\frac{\beta^2}{4}</math>
71
72
<math>{\alpha }=\frac{ln4}{sin^2 (\theta / 2)}  \times \frac{{ c}}{{ h}} \times \frac{1}{1+ h/R} \times cos(2\xi )</math>
73
74
<math>{\it \beta }=\frac{ln4}{sin^2 (\theta / 2)} \times \sqrt{\frac{{ c}}{{ h}} \times \frac{1}{1+ h/R} } \times { sin(2\xi )}</math>
75
76
<math>A_{{\it p}} =\frac{{\it A}_{{\it 0}} }{{ 2}} { exp(-}\frac{{ 4}}{{ \gamma }} { sin}^{{ 2}} { \xi )}</math>
77
78
79
in which <math>h</math>  is the height of satellite,  <math>R</math> is the radius of the Earth, <math>c</math> is the speed of light in vacuum,  <math>A_0</math> is the amplitude of waveform,  <math>\theta</math> is the antenna beam width of satellite altimeter,  <math>\xi</math> is the off-nadir mispointing angle,  <math>t_0</math> is the time migration with respect to the nominal tracking gate,  <math>{ \sigma }_{{ c}}</math> is the rise time of the leading edge linked to the significant wave height,  <math>\gamma</math> represents the parameter related to the beam width, and  <math>erf(x)</math> is the error function.
80
81
From Equation (1), the functions of first and second waveform derivative are given as
82
83
{| class="formulaSCP" style="width: 100%; text-align: center;" 
84
|-
85
| 
86
{| style="text-align: center; margin:auto;" 
87
|-
88
| style="text-align: center;" |  <math>{\it W}^{{\it '}} { (t)}={ A}_{{ p}} \times { exp(}-{ v)[}-{ a}\times { (1}+{ erf(u))}+\frac{\sqrt{{ 2}} }{\sqrt{{ \pi }} { \sigma }_{{ c}} } \times { exp(}-{ u}^{{ 2}} { )]}</math>
89
|}
90
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
91
|}
92
93
{| class="formulaSCP" style="width: 100%; text-align: center;" 
94
|-
95
| 
96
{| style="text-align: center; margin:auto;" 
97
|-
98
| style="text-align: center;" |  <math> {\it W}^{{\it ''}} { (t)}={ A}_{{ p}} \times { exp(}-{ v)}\times { [a}^{{ 2}} \times { 1}+{ erf(u))-}\frac{{ 2}\sqrt{{ 2}} { a\; }}{\sqrt{{ \pi }} { \sigma }_{{ c}} } \times { exp(}-{ u}^{{ 2}} { )-}\frac{{ 2u}}{\sqrt{{ \pi }} { \sigma }_{c}^{{ 2}} } \times { exp(}-{ u}^{{ 2}} { )]} </math>
99
|}
100
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)              
101
|}
102
103
when   <math> {\it W}'' { (t)}=0</math>, the leading edge midpoint <math> (t_m)</math> where the leading edge slope is maximum can be computed, that is
104
105
{| class="formulaSCP" style="width: 100%; text-align: center;" 
106
|-
107
| 
108
{| style="text-align: center; margin:auto;" 
109
|-
110
| style="text-align: center;" |  <math>{\it t}_{{\it m}} ={\it t}_{{\it 0}} { -a\sigma }_{{\it c}}^{{ 2}}</math>
111
|}
112
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
113
|}
114
115
116
For Equation (4), the unknown parameters <math> t_{0}\, ,\sigma_c</math> need to be solved.
117
118
===3.2 Midpoint Determination based on the measured waveform===
119
120
Generally there are three parameters (<math>{\it A}_{{\it 0}},\, {\it t}_{{\it 0}}, \, {\it \sigma }_{{\it c}}</math>) that need to be estimated in that there is a strong correlation between the waveform amplitude parameter and the off-nadir mispointing angle parameter [29], and the the off-nadir mispointing angle is usually less than 0.3° [18,19]. These parameters are obtained with the least squares estimator by using the Equation (1) to fit the measured waveform. The error equation is:
121
122
{| class="formulaSCP" style="width: 100%; text-align: center;" 
123
|-
124
| 
125
{| style="text-align: center; margin:auto;" 
126
|-
127
| style="text-align: center;" | <math>{\bf V}={\bf AX}-{\bf L}  </math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
130
|}
131
132
133
where  <math display="inline"> \bf L</math> is a vector that indicates the difference between the measured waveform and the estimated waveform by Equation (1), <math display="inline"> {\bf X}(dA_0,dt_0,d\sigma_c</math> is the correction vector of unknown parameters, and <math display="inline"> \bf A</math>  is the partial derivative matrix as
134
135
{| class="formulaSCP" style="width: 100%; text-align: center;" 
136
|-
137
| 
138
{| style="text-align: center; margin:auto;" 
139
|-
140
| style="text-align: center;" | <math>{\bf A}=\left[\begin{array}{ccc} {\left. \displaystyle\frac{\partial {\it W}}{\partial {\it t}_{{\it 0}} } \right|_{{\it t}={ 1}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ 1}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ 1}} } \\ {\left. \displaystyle\frac{\partial { W}}{\partial { t}_{{ 0}} } \right|_{{ t}={ 2}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ 2}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ 2}} } \\ {\vdots } & {\vdots } & {\vdots } \\ {\left. \displaystyle\frac{\partial { W}}{\partial { t}_{{ 0}} } \right|_{{ t}={ n}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ n}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ n}} } \end{array}\right]</math> 
141
|}
142
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)                                  
143
|}
144
145
in which the three partial derivatives of the unknown parameter are as following:
146
147
{| class="formulaSCP" style="width: 100%; text-align: center;" 
148
|-
149
| 
150
{| style="text-align: center; margin:auto;" 
151
|-
152
| style="text-align: center;" | <math>\frac{\partial {\it W}}{\partial {\it t}_{{\it 0}} } =\frac{{\it A}_{{\it 0}} }{{ 2}} { exp(-}\frac{{ 4}}{{ \gamma }} { sin}^{{ 2}} { \xi )exp(}-{ v)}\left\{-\left[{ 1}+{ erf(u)}\right]\frac{\partial { v}}{\partial { t}_{{ 0}} } +\frac{{ 2}}{\sqrt{{ \pi }} } { exp(}-{ u}^{{ 2}} { )}\frac{\partial { u}}{\partial { t}_{{ 0}} } \right\}</math> 
153
|}
154
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
155
|}
156
157
{| class="formulaSCP" style="width: 100%; text-align: center;" 
158
|-
159
| 
160
{| style="text-align: center; margin:auto;" 
161
|-
162
| style="text-align: center;" | <math>\frac{\partial {W}}{\partial {\sigma }_{{c}} } =\frac{{A}_{{0}} }{{2}} {exp(-}\frac{{4}}{{\gamma }} {sin}^{{2}} {\xi )exp(}-{v)}\left\{-\left[{1}+{erf(u)}\right]\frac{\partial {v}}{\partial {\sigma }_{{c}} } +\frac{{2}}{\sqrt{{\pi }} } {exp(}-{u}^{{2}} {)}\frac{\partial {u}}{\partial {\sigma }_{{c}} } \right\} </math>
163
|}
164
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
165
|}
166
167
{| class="formulaSCP" style="width: 100%; text-align: center;" 
168
|-
169
| 
170
{| style="text-align: center; margin:auto;" 
171
|-
172
| style="text-align: center;" | <math>\frac{\partial {W}}{\partial {A}_{{0}} } =\frac{{1}}{{2}} {exp(-}\frac{{4}}{{\gamma }} {sin}^{{2}} {\xi )exp(}-{v)}\left[{1}+{erf(u)}\right] </math>
173
|}
174
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)         
175
|}
176
177
178
Due to the waveform samples are decorrelation between the range gates [27,30], these unknown parameters are estimated with the least squares estimator as:
179
180
{| class="formulaSCP" style="width: 100%; text-align: center;" 
181
|-
182
| 
183
{| style="text-align: center; margin:auto;" 
184
|-
185
| style="text-align: center;" | <math>{\boldsymbol X}={(A}^{{T}} {A)}^{-{1}} {(A}^{{T}} {L)}  </math>
186
|}
187
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
188
|}
189
190
191
The initial value will affect parameters estimation. The initial value of unknown parameters are determined by using Off-Center of Gravity (OCOG) algorithm [31]. The unknown parameters are estimated until iterative convergence. The convergence criterion is based on the merit function  <math display="inline">{\boldsymbol \chi }^{{\boldsymbol 2}} </math> defined by:
192
193
{| class="formulaSCP" style="width: 100%; text-align: center;" 
194
|-
195
| 
196
{| style="text-align: center; margin:auto;" 
197
|-
198
| style="text-align: center;" | <math>{\boldsymbol \chi }^{{2}} =\sum {(L}_{{i}} {)}^{{2}}    </math>
199
|}
200
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)                        
201
|}
202
203
204
where <math display="inline">{\boldsymbol L}_{{\boldsymbol i}} </math> is the difference between the estimated waveform and the measured waveform.
205
206
The leading edge midpoint is computed via Equation (4). This leading edge midpoint obtained by this way is called the first wave derivative retracker (FWDR) in this paper. However, the midpoint is only determined by the parameter  <math display="inline">{t}_{{0}} </math> [27], is called as MLE3 and MLE4 retracker. Our main improvement is that the leading edge midpoint is determined by two parameters (<math display="inline">{t}_{{0}} </math>,<math display="inline">{\sigma }_{{c}}^{} </math>) instead of one (<math display="inline">{t}_{{0}} </math>).
207
208
The leading edge midpoint determined based on the function-fitting method is possbile not on the measured waveform. In order to more accurately determine the leading edge midpoint on the measured waveform, combining the advantages of the empirical statistical retracker (similar to Threshold 50% method), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. This leading edge midpoint obtained by this way is called the first leading edge interpolation retracker (FLEIR), that is:
209
210
{| class="formulaSCP" style="width: 100%; text-align: center;" 
211
|-
212
| 
213
{| style="text-align: center; margin:auto;" 
214
|-
215
| style="text-align: center;" | <math>{t}_{{m}} =\hat{{n}}-{1}+\frac{{T}-{W}_{\hat{{n}}{-1}} }{{W}_{\hat{{n}}} -{W}_{\hat{{n}}{-1}} }   </math>
216
|}
217
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
218
|}
219
220
where  <math display="inline">{t}_{{m}} </math> is the re-determined leading edge midpoint, <math display="inline">{T}</math> is the midpoint power from the estimated waveform by Equation (1), <math display="inline">\hat{{n}}</math> the first gate (sampling) position beyond the theoretical midpoint power, and <math display="inline">{W}_{\hat{{n}}} </math> and <math display="inline">{W}_{\hat{{n}}{-}{1}} </math> are the measured waveform power values respectively.
221
222
===3.3 Midpoint determination the based on the first-order difference quotient of waveform===
223
224
<span id='_Hlk16929773'></span><span id='_Hlk16687014'></span>The leading edge midpoint is determined based on the first-order difference quotient of waveform. The waveform is actually a discrete set of echo power on the sampling interval of the altimeter. The power of each gate is composed of the echo signal of reflective surface and noise. The noise of adjacent sampling gate is similar, and can be reduced by the first-order difference quotient. Thus, the unknown parameters can be estimated by using the Equation (2) to fit the first-order difference quotient. Then, the leading edge midpoint can be computed with Equation (4).
225
226
<span id='_Hlk16927062'></span><span id='_Hlk16930611'></span>The first-order difference quotient of waveform,   [[Image:Draft_Liu_514209790-image49.png|54px]] , can be computed as,
227
228
{| class="formulaSCP" style="width: 100%; text-align: center;" 
229
|-
230
| 
231
{| style="text-align: center; margin:auto;" 
232
|-
233
| [[Image:Draft_Liu_514209790-image50.png|186px]]
234
|}
235
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
236
|}
237
238
239
<span id='_Hlk16927182'></span>where  [[Image:Draft_Liu_514209790-image51.png|48px]] and  [[Image:Draft_Liu_514209790-image52.png|36px]] are the echo powers corresponding to gate  [[Image:Draft_Liu_514209790-image53.png|42px]] and  [[Image:Draft_Liu_514209790-image54.png|12px]] respectively, while  [[Image:Draft_Liu_514209790-image55.png|18px]] is the sampling interval. Equation (13) indicates that the  [[Image:Draft_Liu_514209790-image49.png|54px]] is correlated between different gates based on the covariance propagation law.
240
241
Similarly, these unknown parameters are estimated with the least squares method. The error equation is:
242
243
{| class="formulaSCP" style="width: 100%; text-align: center;" 
244
|-
245
| 
246
{| style="text-align: center; margin:auto;" 
247
|-
248
| [[Image:Draft_Liu_514209790-image56.png|114px]]
249
|}
250
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
251
|}
252
253
254
where  [[Image:Draft_Liu_514209790-image57.png|18px]] is a vector that indicates the difference between the estimated by Equation (2) and the first order difference quotient of waveform,  [[Image:Draft_Liu_514209790-image58.png|12px]] ( [[Image:Draft_Liu_514209790-image59.png|24px]] ,  [[Image:Draft_Liu_514209790-image60.png|18px]] ,  [[Image:Draft_Liu_514209790-image61.png|24px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image62.png|18px]] is the partial derivative matrix as
255
256
{| class="formulaSCP" style="width: 100%; text-align: center;" 
257
|-
258
| 
259
{| style="text-align: center; margin:auto;" 
260
|-
261
| [[Image:Draft_Liu_514209790-image63.png|240px]]
262
|}
263
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
264
|}
265
266
267
The three partial derivatives of the unknown parameters based on the function of first derivatives are formulated as,
268
269
{| class="formulaSCP" style="width: 100%; text-align: center;" 
270
|-
271
| 
272
{| style="text-align: center; margin:auto;" 
273
|-
274
| [[Image:Draft_Liu_514209790-image64.png|600px]]
275
|}
276
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)            
277
|}
278
279
{| class="formulaSCP" style="width: 100%; text-align: center;" 
280
|-
281
| 
282
{| style="text-align: center; margin:auto;" 
283
|-
284
| [[Image:Draft_Liu_514209790-image65.png|600px]]
285
|}
286
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)   
287
|}
288
289
{| class="formulaSCP" style="width: 100%; text-align: center;" 
290
|-
291
| 
292
{| style="text-align: center; margin:auto;" 
293
|-
294
| [[Image:Draft_Liu_514209790-image66.png|444px]]
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
297
|}
298
299
300
<span id='_Hlk16927232'></span>Due to the difference quotient  [[Image:Draft_Liu_514209790-image67.png|66px]] is computed by equation (13), it is correlated between different gates based on the covariance propagation law. The unknown parameters are estimated with the least squares estimator as:
301
302
{| class="formulaSCP" style="width: 100%; text-align: center;" 
303
|-
304
| 
305
{| style="text-align: center; margin:auto;" 
306
|-
307
| [[Image:Draft_Liu_514209790-image68.png|192px]]
308
|}
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
310
|}
311
312
313
where  [[Image:Draft_Liu_514209790-image69.png|12px]] is the weight matrix as
314
315
{| class="formulaSCP" style="width: 100%; text-align: center;" 
316
|-
317
| 
318
{| style="text-align: center; margin:auto;" 
319
|-
320
| [[Image:Draft_Liu_514209790-image70.png|246px]]
321
|}
322
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
323
|}
324
325
326
The initial values of the unknown parameters are also determined by the OCOG algorithm. The unknown parameters are estimated until iterative convergence (the convergence criterion is similar to Equation 11). The waveform leading edge midpoint is computed via Equation (4). The midpoint obtained by this way is called the second wave derivative retracker (SWDR) in this paper.
327
328
<span id='_Hlk16930537'></span>Similar to Equation (12), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. The midpoint obtained by this way is called the second leading edge interpolation retracker (SLEIR).
329
330
A flow chart of the new waveform retracking is shown in [[#img-2|Figure 2]].
331
332
<div id='img-2'></div>
333
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
334
|-
335
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image71.png|384px]]
336
|- style="text-align: center; font-size: 75%;"
337
| colspan="1" style="padding-bottom:10px;"| '''Figure 2'''. Flow chart of waveform retracking based on waveform derivative
338
|}
339
340
=4. Experiment Results and Analysis=
341
342
<span id='_Hlk16781048'></span><span id='_Hlk16779792'></span>
343
===4.1 Comparison with crossover discrepancies of SSHs===
344
345
<span id='_Hlk16779736'></span><span id='_Hlk16839022'></span><span id='_Hlk16781462'></span>The crossover is the intersection of two tracks between ascending pass and descending pass. The crossover discrepancy of SSHs is an evaluation criterion of waveform retracking method in the open ocean. To obtain the statistical results, we define SSH as given by
346
347
{| class="formulaSCP" style="width: 100%; text-align: center;" 
348
|-
349
| 
350
{| style="text-align: center; margin:auto;" 
351
|-
352
| [[Image:Draft_Liu_514209790-image72.png|600px]]
353
|}
354
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
355
|}
356
357
<span id='_Hlk16780874'></span>where  [[Image:Draft_Liu_514209790-image73.png|24px]] is the altitude of Jason-2 satellite,  [[Image:Draft_Liu_514209790-image74.png|54px]] is the range between satellite and reflective surface (partial instrumental corrections included, i.e. distance antenna-COG, USO drift correction, internal path correction),  [[Image:Draft_Liu_514209790-image75.png|54px]] is the Doppler correction,  [[Image:Draft_Liu_514209790-image76.png|54px]] is the modeled instrumental correction,  [[Image:Draft_Liu_514209790-image77.png|84px]] is the system bias of instrument,  [[Image:Draft_Liu_514209790-image78.png|42px]] is the dry tropospheric correction which is calculated from the atmospheric pressure and tide published by the European Centre for Medium-range Weather Forecasts (ECMWF),  [[Image:Draft_Liu_514209790-image79.png|48px]] is the wet tropospheric correction, which is calculated from the data measured by the microwave radiometer carried by the satellite,  [[Image:Draft_Liu_514209790-image80.png|48px]] is the ionospheric delay corrected using Dual-frequency,  [[Image:Draft_Liu_514209790-image81.png|54px]] is the sea state bias correction, which is calculated by empirical fitting of significant wave height and wind speed,  [[Image:Draft_Liu_514209790-image82.png|42px]] (inverted barometer correction) and  [[Image:Draft_Liu_514209790-image83.png|42px]] (high frequency atmospheric pressure loading correction) are the dynamic atmospheric corrections,  [[Image:Draft_Liu_514209790-image84.png|42px]] is the geocentric ocean tide height correction, obtained by GOT4.10 model,  [[Image:Draft_Liu_514209790-image85.png|42px]] is the solid earth tide height correction, and  [[Image:Draft_Liu_514209790-image86.png|36px]] is the pole tide height correction. These above corrections are available in the SGDRs.
358
359
<span id='_Hlk16781311'></span>The range correction  [[Image:Draft_Liu_514209790-image87.png|48px]] of waveform retracking is given by
360
361
{| class="formulaSCP" style="width: 100%; text-align: center;" 
362
|-
363
| 
364
{| style="text-align: center; margin:auto;" 
365
|-
366
| [[Image:Draft_Liu_514209790-image88.png|222px]]
367
|}
368
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
369
|}
370
371
372
where  [[Image:Draft_Liu_514209790-image89.png|12px]] is the leading edge midpoint,  [[Image:Draft_Liu_514209790-image90.png|12px]] the nominal tracking gate ( [[Image:Draft_Liu_514209790-image91.png|12px]] =32 gate of Jason-2 altimeter wavefrom),  [[Image:Draft_Liu_514209790-image92.png|30px]] the sampling interval of a gate (1 gate=3.125 ns of Jason-2 altimeter).
373
374
<span id='_Hlk16839791'></span><span id='_Hlk16779852'></span>The waveform data of cycles 001 to 200 are processed. For assessing the performance of the new retracker, we compared the retracked SSH from Threshold 50%, OCOG and 5-β retrackers, as well as the Ice-1 and MLE4 ( or Ocean) retrackers from SGDRs. Also, we obtained the ALES [19] retracked SSH data ([http://openadb.dgfi.tum.de/ http://openadb.dgfi.tum.de/]), which is widely recognized as a high-precision SSH products [22,32]. The retracked SSHs and the crossover discrepancies of SSHs in each cycle were computed. Some data of cycles are missing (Such as cycles 174, 175, 190, 191), and the gross error (>1 m) of the crossover discrepancies of SSHs are removed. There are 1502 crossover discrepancies in total. The statistics of crossover discrepancies of SSHs obtained by several retrackers are listed in [[#tab-1|Table 1]]. The Unretracked represents the raw SSHs without waveform retracking.
375
376
By analyzing the RMS of the crossover discrepancies of SSHs, it is found that the results of several retracking methods are smaller than unretracked results, indicating that the waveform retracking can reduce the RMS of crossover discrepancies of SSH and improve the quality of satellite altimeter data. The RMSs obtained by FWDR, FLEIR, SWDR and SLEIR are 0.108 m, 0.107 m, 0.114 m and 0.119 m, which are smaller than 0.124 m, 0.177 m and 0.121 m obtained by Threshold 50%, OCOG and 5-β methods, respectively, indicating that the new methods can get more accurate results than the common methods in this region. The RMSs obtained by new mthods, which are less than 0.192 m, and 0.112 m obtained by Ice-1 and MLE4 methods from SGDR data, indicating that it can provide more accurate results than SGDRs (retracked SSH by MLE4, Ice-1 retracker) in the open ocean. In addition, the RMSs obtained by FWDR and FLEIR are 0.108 m and 0.107 m, which are smaller than 0.114 m obtained by MLE3 retracker, indicating that the midpoint determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) is more accurate than one parameter ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
377
378
<div class="center" style="font-size: 75%;">'''Table 1'''. Statistics of crossover discrepancies of SSHs obtained by several retracking methods (Unit: m)</div>
379
380
<div id='tab-1'></div>
381
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
382
|-style="text-align:center"
383
! Retracker !! MAX !! MIN !! MEAN !! STD !! RMS
384
|-
385
|  style="text-align: center;vertical-align: top;"|Unretracked
386
|  style="text-align: center;vertical-align: top;"|0.996
387
|  style="text-align: center;vertical-align: top;"|-0.805
388
|  style="text-align: center;vertical-align: top;"|0.001
389
|  style="text-align: center;vertical-align: top;"|0.225
390
|  style="text-align: center;vertical-align: top;"|0.225
391
|-
392
|  style="text-align: center;vertical-align: top;"|Threshold(50%)
393
|  style="text-align: center;vertical-align: top;"|0.936
394
|  style="text-align: center;vertical-align: top;"|-0.714
395
|  style="text-align: center;vertical-align: top;"|-0.004
396
|  style="text-align: center;vertical-align: top;"|0.124
397
|  style="text-align: center;vertical-align: top;"|0.124
398
|-
399
|  style="text-align: center;vertical-align: top;"|OCOG
400
|  style="text-align: center;vertical-align: top;"|0.940
401
|  style="text-align: center;vertical-align: top;"|-0.981
402
|  style="text-align: center;vertical-align: top;"|-0.005
403
|  style="text-align: center;vertical-align: top;"|0.177
404
|  style="text-align: center;vertical-align: top;"|0.177
405
|-
406
|  style="text-align: center;vertical-align: top;"|5-β
407
|  style="text-align: center;vertical-align: top;"|0.692
408
|  style="text-align: center;vertical-align: top;"|-0.692
409
|  style="text-align: center;vertical-align: top;"|-0.007
410
|  style="text-align: center;vertical-align: top;"|0.120
411
|  style="text-align: center;vertical-align: top;"|0.121
412
|-
413
|  style="text-align: center;vertical-align: top;"|Ice-1
414
|  style="text-align: center;vertical-align: top;"|0.783
415
|  style="text-align: center;vertical-align: top;"|-0.774
416
|  style="text-align: center;vertical-align: top;"|-0.031
417
|  style="text-align: center;vertical-align: top;"|0.190
418
|  style="text-align: center;vertical-align: top;"|0.192
419
|-
420
|  style="text-align: center;vertical-align: top;"|MLE3
421
|  style="text-align: center;vertical-align: top;"|0.716
422
|  style="text-align: center;vertical-align: top;"|-0.506
423
|  style="text-align: center;vertical-align: top;"|-0.005
424
|  style="text-align: center;vertical-align: top;"|0.114
425
|  style="text-align: center;vertical-align: top;"|0.114
426
|-
427
|  style="text-align: center;vertical-align: top;"|MLE4
428
|  style="text-align: center;vertical-align: top;"|0.773
429
|  style="text-align: center;vertical-align: top;"|-0.652
430
|  style="text-align: center;vertical-align: top;"|-0.004
431
|  style="text-align: center;vertical-align: top;"|0.112
432
|  style="text-align: center;vertical-align: top;"|0.112
433
|-
434
|  style="text-align: center;vertical-align: top;"|ALES
435
|  style="text-align: center;vertical-align: top;"|0.741
436
|  style="text-align: center;vertical-align: top;"|-0.724
437
|  style="text-align: center;vertical-align: top;"|-0.002
438
|  style="text-align: center;vertical-align: top;"|0.105
439
|  style="text-align: center;vertical-align: top;"|0.105
440
|-
441
|  style="text-align: center;vertical-align: top;"|FWDR
442
|  style="text-align: center;vertical-align: top;"|0.693
443
|  style="text-align: center;vertical-align: top;"|-0.524
444
|  style="text-align: center;vertical-align: top;"|-0.003
445
|  style="text-align: center;vertical-align: top;"|0.108
446
|  style="text-align: center;vertical-align: top;"|0.108
447
|-
448
|  style="text-align: center;vertical-align: top;"|FLEIR
449
|  style="text-align: center;vertical-align: top;"|0.696
450
|  style="text-align: center;vertical-align: top;"|-0.623
451
|  style="text-align: center;vertical-align: top;"|-0.003
452
|  style="text-align: center;vertical-align: top;"|0.107
453
|  style="text-align: center;vertical-align: top;"|0.107
454
|-
455
|  style="text-align: center;vertical-align: top;"|SWDR
456
|  style="text-align: center;vertical-align: top;"|0.740
457
|  style="text-align: center;vertical-align: top;"|-0.714
458
|  style="text-align: center;vertical-align: top;"|0.000
459
|  style="text-align: center;vertical-align: top;"|0.114
460
|  style="text-align: center;vertical-align: top;"|0.114
461
|-
462
|  style="text-align: center;vertical-align: top;"|SLEIR
463
|  style="text-align: center;vertical-align: top;"|0.772
464
|  style="text-align: center;vertical-align: top;"|-0.749
465
|  style="text-align: center;vertical-align: top;"|-0.005
466
|  style="text-align: center;vertical-align: top;"|0.119
467
|  style="text-align: center;vertical-align: top;"|0.119
468
|}
469
470
471
Furthermore, we comparison with the retracked SSH by ALES retraker. The RMS obtained by FLEIR is 0.107 m, which is slightly smaller than 0.105 m obtained by ALES products. The difference may be caused by different correction models, such as sea state bias correction and ocean tide correction. This also shown that the retracked SSH by new methods is reliable compared with the SSH obtained by ALES products.
472
473
<span id='_Hlk16924105'></span><span id='_Hlk16781133'></span>
474
===4.2 Comparison with geoid heights ===
475
476
In order to contrast and analyze the retracked SSHs, the regional geoid heights are derived from the Earth Gravity Field Model EGM2008 [33] up to degree 2160 (Http://icgem.gfz-postdam.de/ICGEM). The performance of retracked SSHs can be assessed in comparison with geoid heights [7,34].
477
478
If the retracked SSHs did not resemble the geoid heights, then the retracked SSHs was considered to be not valid, even if it had been able to correct the errors of SSH [6,9,35]. The correlation coefficient and improvement of percentage (IMP) of the difference between retracked SSHs and geoid heights are used to analyze the quality of retracked SSHs. It is widely accepted that the higher the IMP value is, the better the retracked result is. The IMP can be computed as
479
480
{| class="formulaSCP" style="width: 100%; text-align: center;" 
481
|-
482
| 
483
{| style="text-align: center; margin:auto;" 
484
|-
485
| [[Image:Draft_Liu_514209790-image93.png|222px]]
486
|}
487
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
488
|}
489
490
491
where  [[Image:Draft_Liu_514209790-image94.png|36px]] is the improvement percentage,  [[Image:Draft_Liu_514209790-image95.png|30px]] is the STD of the difference between geoid heights and SSHs without waveform retracking correction.  [[Image:Draft_Liu_514209790-image96.png|48px]] is the STD of the difference between geoid heights and altimetry-derived SSHs with waveform retracking correction.
492
493
[[#img-3|Figure 3]]  shows retracked SSHs and geoid heights of by several methods. For the image to be clearly distinguishable, we only show results from the Ice-1, MLE4, Threshold 50% and FLEIR methods.
494
495
<div id='img-3'></div>
496
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
497
|-
498
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image97.png|600px]]
499
|- style="text-align: center; font-size: 75%;"
500
| colspan="1" style="padding-bottom:10px;"| '''Figure 3'''. Comparison of the Ice-1, MLE4, Threshold 50%, FLEIR retracked SSHs and geoid heights
501
|}
502
503
504
[[#tab-2|Table 2]] gives the statistical results of the IMP and correlation coefficient of the differences between retracked SSHs (cycle010pass229) and geoid heights. The cycle is selected randomly, and using other cycles will not alter our findings.
505
506
<div class="center" style="font-size: 75%;">'''Table 2'''.  Statistics of the differences between retracked SSHs and geoid heights (Unit: m)</div>
507
508
<div id='tab-2'></div>
509
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
510
|-style="text-align:center"
511
! Retracker !! MAX !! MIN !! MEAN !! STD !! IMP/(%) !! Correlation coefficient 
512
|-
513
|  style="text-align: center;"|Unretracked
514
|  style="text-align: center;"|2.118
515
|  style="text-align: center;"|0.388
516
|  style="text-align: center;"|1.149
517
|  style="text-align: center;"|0.265
518
|  style="text-align: center;"|
519
|  style="text-align: center;"|0.921
520
|-
521
|  style="text-align: center;"|Threshold(50%)
522
|  style="text-align: center;"|2.799
523
|  style="text-align: center;"|0.913
524
|  style="text-align: center;"|1.551
525
|  style="text-align: center;"|0.222
526
|  style="text-align: center;"|16.2%
527
|  style="text-align: center;"|0.940
528
|-
529
|  style="text-align: center;"|OCOG 
530
|  style="text-align: center;"|3.096
531
|  style="text-align: center;"|0.517
532
|  style="text-align: center;"|2.075
533
|  style="text-align: center;"|0.273
534
|  style="text-align: center;"|-3.0%
535
|  style="text-align: center;"|0.920
536
|-
537
|  style="text-align: center;"|Βeta-5
538
|  style="text-align: center;"|3.104
539
|  style="text-align: center;"|0.906
540
|  style="text-align: center;"|1.461
541
|  style="text-align: center;"|0.226
542
|  style="text-align: center;"|14.7%
543
|  style="text-align: center;"|0.939
544
|-
545
|  style="text-align: center;"|Ice-1
546
|  style="text-align: center;"|3.144
547
|  style="text-align: center;"|1.328
548
|  style="text-align: center;"|1.777
549
|  style="text-align: center;"|0.239
550
|  style="text-align: center;"|9.8%
551
|  style="text-align: center;"|0.930
552
|-
553
|  style="text-align: center;"|MLE4
554
|  style="text-align: center;"|2.775
555
|  style="text-align: center;"|0.959
556
|  style="text-align: center;"|1.463
557
|  style="text-align: center;"|0.225
558
|  style="text-align: center;"|15.1%
559
|  style="text-align: center;"|0.939
560
|-
561
|  style="text-align: center;vertical-align: top;"|FWDR
562
|  style="text-align: center;"|2.700
563
|  style="text-align: center;"|0.928
564
|  style="text-align: center;"|1.456
565
|  style="text-align: center;"|0.217
566
|  style="text-align: center;"|18.1%
567
|  style="text-align: center;"|0.944
568
|-
569
|  style="text-align: center;vertical-align: top;"|FLEIR
570
|  style="text-align: center;"|2.601
571
|  style="text-align: center;"|0.946
572
|  style="text-align: center;"|1.456
573
|  style="text-align: center;"|0.216
574
|  style="text-align: center;"|18.5%
575
|  style="text-align: center;"|0.944
576
|-
577
|  style="text-align: center;vertical-align: top;"|SWDR
578
|  style="text-align: center;"|2.533
579
|  style="text-align: center;"|0.921
580
|  style="text-align: center;"|1.480
581
|  style="text-align: center;"|0.219
582
|  style="text-align: center;"|17.4%
583
|  style="text-align: center;"|0.943
584
|-
585
|  style="text-align: center;vertical-align: top;"|SLEIR
586
|  style="text-align: center;"|2.739
587
|  style="text-align: center;"|0.909
588
|  style="text-align: center;"|1.458
589
|  style="text-align: center;"|0.226
590
|  style="text-align: center;"|14.7%
591
|  style="text-align: center;"|0.939
592
|}
593
594
595
[[#tab-2|Table 2]] provides a summary of results, where the STD (0.265 m) of the difference is large, which indicates that the unretracked SSH has poor smoothness and fluctuation. After waveform retracking, the STD is reduced, and the smoothness of SSH is improved, which eliminated large abrupt changes and maintained good smoothness of SSH. The IMP and correlation coefficient obtained by new methods are better than the results of the common methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4% and 14.7%, respectively, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1, and MLE4 methods are 16.2%, -3.0%, 14.7%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR and SLEIR are 0.944, 0.944, 0.943 and 0.939 respectively, while the value obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 are 0.940, 0.920, 0.939, 0.930 and 0.939.
596
597
Therefore, it is concluded that the new proposed retracking methods in this paper are reliable, and exhibit better performance than the common retrackers.
598
599
<span id='_Hlk16924416'></span>
600
===4.3 Comparsion with tide gauge records===
601
602
In addition, we compared the retracked SSH using several retracking methods with the tide gauge records in the coastal area. As the tide gauge records are not corrected for tidal and dynamic atmospheric effects, we also do not apply these corrections to the altimeter data by employing [23,36]
603
604
{| class="formulaSCP" style="width: 100%; text-align: center;" 
605
|-
606
| 
607
{| style="text-align: center; margin:auto;" 
608
|-
609
| [[Image:Draft_Liu_514209790-image98.png|600px]]
610
|}
611
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
612
|}
613
614
615
<span id='_Hlk16782260'></span>where  [[Image:Draft_Liu_514209790-image99.png|36px]] is the solid earth tide correction; the other corrections is the same as Equation (21), and all corrections are available in the SGDRs.
616
617
<span id='_Hlk16779974'></span>The hourly tide gauge records were interpolated to the time of the altimeter measurement. To avoid possible discrepancy datum of both altimetry-derived SSHs and tide gauge records, the temporal mean is removed from each time series, referring to as height anomaly [15]. For assessed the performance of the retracked SSH in the coastal area, we have categorized the altimetry-derived SSH to two spatial intervasl: namely 10-20 km and 0-10 km away from coastline, correspond to cases 1 and 2, respectively. Finally, the correlation coefficient and STD of the difference between height anomaly from several retrackers and tide gauge records were computed.
618
619
In the near QBTG, the height anomaly from several retrackers and tide gauge records in cases 1 and 2 are shown in Figures [[#img-4|4]]  and [[#img-5|5]], respectively. For the image to be clearly distinguishable, we only shown results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
620
621
<div id='img-4'></div>
622
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
623
|-
624
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image100.png|600px]]
625
|- style="text-align: center; font-size: 75%;"
626
| colspan="1" style="padding:10px;"| '''Figure 4'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50% and FLEIR retrackers and QBTG records in case 1 
627
|}
628
629
<div id='img-4'></div>
630
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
631
|-
632
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image101.png|600px]]
633
|- style="text-align: center; font-size: 75%;"
634
| colspan="1" style="padding-bottom:10px;"| '''Figure 5'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and QBTG records in case 2
635
|}
636
637
638
[[#tab-3|Table 3]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and QBTG records in cases 1 and 2.
639
640
<div class="center" style="font-size: 75%;">'''Table 3'''. Statistical results of height anomaly between the retracked SSH and QBTG records</div>
641
642
<div id='tab-3'></div>
643
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
644
|-style="text-align:center"
645
! rowspan='2' | Retracker !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
646
|-
647
|  style="text-align: center;"|STD (m)
648
|  style="text-align: center;"|Correlation coefficient
649
|  style="text-align: center;"|STD (m)
650
|  style="text-align: center;"|Correlation coefficient
651
|-
652
|  style="text-align: center;vertical-align: top;"|Unretracked
653
|  style="text-align: center;vertical-align: top;"|0.302
654
|  style="text-align: center;vertical-align: top;"|0.789
655
|  style="text-align: center;vertical-align: top;"|0.370
656
|  style="text-align: center;vertical-align: top;"|0.666
657
|-
658
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
659
|  style="text-align: center;vertical-align: top;"|0.248
660
|  style="text-align: center;vertical-align: top;"|0.854
661
|  style="text-align: center;vertical-align: top;"|0.272
662
|  style="text-align: center;vertical-align: top;"|0.820
663
|-
664
|  style="text-align: center;vertical-align: top;"|OCOG
665
|  style="text-align: center;vertical-align: top;"|0.271
666
|  style="text-align: center;vertical-align: top;"|0.813
667
|  style="text-align: center;vertical-align: top;"|0.334
668
|  style="text-align: center;vertical-align: top;"|0.729
669
|-
670
|  style="text-align: center;vertical-align: top;"|5-β
671
|  style="text-align: center;vertical-align: top;"|0.237
672
|  style="text-align: center;vertical-align: top;"|0.858
673
|  style="text-align: center;vertical-align: top;"|0.293
674
|  style="text-align: center;vertical-align: top;"|0.786
675
|-
676
|  style="text-align: center;vertical-align: top;"|Ice-1
677
|  style="text-align: center;vertical-align: top;"|0.262
678
|  style="text-align: center;vertical-align: top;"|0.837
679
|  style="text-align: center;vertical-align: top;"|0.303
680
|  style="text-align: center;vertical-align: top;"|0.778
681
|-
682
|  style="text-align: center;vertical-align: top;"|MLE4
683
|  style="text-align: center;vertical-align: top;"|0.242
684
|  style="text-align: center;vertical-align: top;"|0.860
685
|  style="text-align: center;vertical-align: top;"|0.278
686
|  style="text-align: center;vertical-align: top;"|0.809
687
|-
688
|  style="text-align: center;vertical-align: top;"|FWDR
689
|  style="text-align: center;vertical-align: top;"|0.232
690
|  style="text-align: center;vertical-align: top;"|0.870
691
|  style="text-align: center;vertical-align: top;"|0.271
692
|  style="text-align: center;vertical-align: top;"|0.817
693
|-
694
|  style="text-align: center;vertical-align: top;"|FLEIR
695
|  style="text-align: center;vertical-align: top;"|0.236
696
|  style="text-align: center;vertical-align: top;"|0.867
697
|  style="text-align: center;vertical-align: top;"|0.269
698
|  style="text-align: center;vertical-align: top;"|0.821
699
|-
700
|  style="text-align: center;vertical-align: top;"|SWDR
701
|  style="text-align: center;vertical-align: top;"|0.232
702
|  style="text-align: center;vertical-align: top;"|0.871
703
|  style="text-align: center;vertical-align: top;"|0.269
704
|  style="text-align: center;vertical-align: top;"|0.820
705
|-
706
|  style="text-align: center;vertical-align: top;"|SLEIR
707
|  style="text-align: center;vertical-align: top;"|0.237
708
|  style="text-align: center;vertical-align: top;"|0.867
709
|  style="text-align: center;vertical-align: top;"|0.277
710
|  style="text-align: center;vertical-align: top;"|0.811
711
|}
712
713
714
[[#tab-3|Table 3]] in which the STD of the difference of height anomaly with waveform retracking is smaller than the unretracked and the correlation coefficient is higher than the result of unretracked, shows that each retracker method improves the accuracy of SSH in cases 1 and 2. There is a high correlation coefficient (~0.8) of the height anomaly between retracked SSH and QBTG records in case 1. The STD obtained by MLE4 is 0.242 m, which is smaller than 0.248 m, 0.271 m, 0.245 m, and 0.262 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.232 m, 0.236 m, 0.232 m and 0.237 m respectively, which are also smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.860, which is higher than 0.854, 0.813, 0.858 and 0.837 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.870, 0.867, 0.871 and 0.867, which are also higher than MLE4 method.
715
716
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are the same as that of Threshold 50%, which are better than the result of OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWRand SLEIR are 0.271 m, 0.269 m, 0.269 m, and 0.277 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.272 m, 0.334 m, 0.293 m, 0.303 m and 0.278 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.817, 0.821, 0.820 and 0.811, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.820, 0.729, 0.786, 0.778, and 0.809. In addition, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in cases 1 and 2.
717
718
In the near KaohTG, the height anomaly from several retrackers and KaohTG records are shown in Figures [[#img-6|6]]  and [[#img-7|7]], respectively. Similarly, we only shown the results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
719
720
<div id='img-6'></div>
721
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
722
|-
723
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image102.png|600px]]
724
|- style="text-align: center; font-size: 75%;"
725
| colspan="1" style="padding:10px;"| '''Figure 6'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 1
726
|}
727
728
729
<div id='img-7'></div>
730
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
731
|-
732
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image103.png|600px]]
733
|- style="text-align: center; font-size: 75%;"
734
| colspan="1" style="padding-bottom:10px;"| '''Figure 7'''. Height anomaly variation obtained by Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 2
735
|}
736
737
738
[[#tab-4|Table 4]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and KaohTG records in cases 1 and 2.
739
740
<div class="center" style="font-size: 75%;">
741
'''Table 4'''. Statistical results of height anomaly between the retracked SSH and KaohTG records</div>
742
743
<div id='tab-1'></div>
744
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
745
|-style="text-align:center"
746
! rowspan='2' | Retracker   !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
747
|-
748
|  style="text-align: center;"|STD (m)
749
|  style="text-align: center;"|Correlation coefficient
750
|  style="text-align: center;"|STD (m)
751
|  style="text-align: center;"|Correlation coefficient
752
|-
753
|  style="text-align: center;vertical-align: top;"|Unretracked
754
|  style="text-align: center;vertical-align: top;"|0.227
755
|  style="text-align: center;vertical-align: top;"|0.626
756
|  style="text-align: center;vertical-align: top;"|0.248
757
|  style="text-align: center;vertical-align: top;"|0.514
758
|-
759
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
760
|  style="text-align: center;vertical-align: top;"|0.153
761
|  style="text-align: center;vertical-align: top;"|0.819
762
|  style="text-align: center;vertical-align: top;"|0.195
763
|  style="text-align: center;vertical-align: top;"|0.696
764
|-
765
|  style="text-align: center;vertical-align: top;"|OCOG
766
|  style="text-align: center;vertical-align: top;"|0.234
767
|  style="text-align: center;vertical-align: top;"|0.623
768
|  style="text-align: center;vertical-align: top;"|0.268
769
|  style="text-align: center;vertical-align: top;"|0.407
770
|-
771
|  style="text-align: center;vertical-align: top;"|5-β
772
|  style="text-align: center;vertical-align: top;"|0.149
773
|  style="text-align: center;vertical-align: top;"|0.823
774
|  style="text-align: center;vertical-align: top;"|0.208
775
|  style="text-align: center;vertical-align: top;"|0.638
776
|-
777
|  style="text-align: center;vertical-align: top;"|Ice-1
778
|  style="text-align: center;vertical-align: top;"|0.188
779
|  style="text-align: center;vertical-align: top;"|0.740
780
|  style="text-align: center;vertical-align: top;"|0.239
781
|  style="text-align: center;vertical-align: top;"|0.560
782
|-
783
|  style="text-align: center;vertical-align: top;"|MLE4
784
|  style="text-align: center;vertical-align: top;"|0.141
785
|  style="text-align: center;vertical-align: top;"|0.841
786
|  style="text-align: center;vertical-align: top;"|0.220
787
|  style="text-align: center;vertical-align: top;"|0.632
788
|-
789
|  style="text-align: center;vertical-align: top;"|FWDR
790
|  style="text-align: center;vertical-align: top;"|0.145
791
|  style="text-align: center;vertical-align: top;"|0.828
792
|  style="text-align: center;vertical-align: top;"|0.198
793
|  style="text-align: center;vertical-align: top;"|0.679
794
|-
795
|  style="text-align: center;vertical-align: top;"|FLEIR
796
|  style="text-align: center;vertical-align: top;"|0.135
797
|  style="text-align: center;vertical-align: top;"|0.851
798
|  style="text-align: center;vertical-align: top;"|0.191
799
|  style="text-align: center;vertical-align: top;"|0.711
800
|-
801
|  style="text-align: center;vertical-align: top;"|SWDR
802
|  style="text-align: center;vertical-align: top;"|0.140
803
|  style="text-align: center;vertical-align: top;"|0.838
804
|  style="text-align: center;vertical-align: top;"|0.183
805
|  style="text-align: center;vertical-align: top;"|0.716
806
|-
807
|  style="text-align: center;vertical-align: top;"|SLEIR
808
|  style="text-align: center;vertical-align: top;"|0.143
809
|  style="text-align: center;vertical-align: top;"|0.833
810
|  style="text-align: center;vertical-align: top;"|0.201
811
|  style="text-align: center;vertical-align: top;"|0.685
812
|}
813
814
815
[[#tab-4|Table 4]]  shows that each retracker methods improves the accuracy of SSH in cases 1 and 2. There is a small STD and high correlation coefficient (~0.8) of the height anomaly between retracked SSH and tide gauge (KaohTG) distance from coastline 10-20 km. The STD obtained by MLE4 is 0.141 m, which is smaller than 0.153 m, 0.234 m, 0.149 m, 0.188 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.145 m, 0.135 m, 0.140 m and 0.143 m, which are smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.841, which is higher than 0.819, 0.623, 0.823 and 0.740 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.828, 0.851, 0.838 and 0.833, which are higher than MLE4 method.
816
817
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are better than the result of Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.198 m, 0.191 m, 0.183 m and 0.201 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.195 m, 0.268 m, 0.208 m, 0.239 m and 0.220 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.679, 0.711, 0.716, and 0.685, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.696, 0.407, 0.630, 0.560 and 0.632. Also, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in case 1 and 2.
818
819
Through comparison with two tide gauges, we reached the following conclusions. The performance of MLE4 method is better than Threshold 50%, OCOG, 5-β, Ice-1 methods in case 1, and the performance of Threshold 50% method is better than OCOG, 5-β, Ice-1 and MLE4 methods in case 2. But, the new methods have a better performance than Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. The STD and correlation coefficient obtained by FLEIR are better than the result of FDWR, indicating that the re-determined midpoint is more accurate through interpolating the estimated lead edge midpoint on the measured waveform.
820
821
Therefore, the accuracy of the new method is better than that of the common retrackers. The new method has been validated in the coastal area.
822
823
==5. Conclusion==
824
825
In order to deal with the disturbed satellite radar altimeter echo waveform in the open ocean and coastal area, a retracking method based on waveform derivative is proposed in this paper. The leading edge midpoint is determined by the second derivative zero point, and combining the advantages of function-fitting and empirical statistical method, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. Four new waveform retracking results are given.
826
827
By processing the waveforms from the Jason-2 SGDRs, we computed the retracked SSHs. In the open ocean, through comparison with the RMS of crossover discrepancies of SSH, the RMSs obtained by FWDR, FLEIR, SWDR, SLEIR are 0.108 m, 0.107 m, 0.114 m, and 0.119 m respectively, which are smaller than 0.124 m, 0.177 m, 0.121 m, 0.192 m, and 0.112 obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods. Further, through comparison with the geoid heights, the IMP and correlation coefficient of the differences between retracked SSHs with respect to geoid heights were computed. The IMP and correlation coefficient obtained by new retracking methods are better than the result of common retracker methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4%, and 14.7%, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 16.2%, 14.7%, -3.0%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR, and SLEIR are 0.944, 0.944, 0.943, and 0.939, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.940, 0.920, 0.939, 0.930 and 0.939.
828
829
In addtion, through comparison with tide gauge records, the STD and correlation coefficient of the height anomaly between the retracked SSH and tide gauge records were computed. The STDs obtained by the new method are 0.135-0.269 m, which are better than 0.153-0.272 m, 0.234-0.334 m, 0.149-0.293 m, 0.188-0.303 m, and 0.141-0.278 m obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. Both in the open ocean and coastal area, the performance of the new method is better than the Threshold 50%, OCOG, 5-β methods as well as the Ice-1 and MLE4 retracker from SGDRs.
830
831
Therefore, the new method has been validated from Jason-2 SGDRs, it can recover more reliable SSH and improve the SGDRs quality both in the open ocean and coastal area. For the improvement of the quanlity of satellite altimeter data, especially the processing of waveform data, it also provides a new way for studying waveform retracking.
832
833
==Acknowledgments==
834
835
We are very grateful to AVISO for providing the SGDRs, and the University of Hawaii for providing the tide gauge records. This research was funded by National Natural Science Foundation of China (Grant Nos. 41774001, 41374009, 41874091) and SDUST Research Fund (Grant No. 2014TDJH101).
836
837
==References==
838
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
839
840
[1] Fu L.L., Cazenave A. Satellite altimetry and earth sciences: A handbook of techniques and applications. California, San Diego Academic Press, 373-375, 2001.
841
842
[2] Guo J.Y., Wang J.B., Hu Z.B., Hwang C.W., Chen C.F., Gao Y.G.. Temporal-spatial variations of sea level over Chinese seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chinese Journal of Geophysics, 58(9):3103-3120, 2015.
843
844
[3] Hsiao Y.S., Hwang C., Cheng Y.S., Chen L.C., Hsu H.J., Tsai J.H., Liu C.L., Wang C.C., Kao Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sensing of Environment, 176:69-83, 2016.
845
846
[4] Stammer D., Cazenave A. Satellite altimetry over oceans and land surfaces. Florida: Taylor & Francis Boca Raton, CRC Press, 670 pp., 2017.
847
848
[5] Zhu C., Guo J., Hwang C., Gao J., Yuan J., Liu X. How HY-2A/GM altimeter performs in marine gravity derivation: assessment in the South China Sea. Geophysical Journal International, 219:1056-1064, 2019.
849
850
[6] Gómez-Enri J., González C. J., Passaro M., Vignudelli S., Álvarez O., Cipollini P., Mañanes R., Bruno M., Lopez-Carmona P., Izquierdo A. Wind-induced cross-strait sea level variability in the Strait of Gibraltar from coastal altimetry and in-situ measurements. Remote Sensing of Environment, 221:596-608, 2019.
851
852
[7] Hwang C., Guo J., Deng X., Hsu H.Y., Liu Y. Coastal gravity anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the role of airborne gravity data. Journal of Geodesy, 80(4):204-216, 2006.
853
854
[8] Guo J.Y., Gao Y.G., Hwang C.W., Sun J.L. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Science China Earth Sciences, 53(4):610-616, 2010.
855
856
[9] Huang Z., Wang H., Luo Z., Shum C., Tseng K.H., Zhong B. Improving Jason-2 sea surface heights within 10 km offshore by retracking decontaminated waveforms. Remote Sensing, 9(10):1077, 2017.
857
858
[10] Cipollini P., Calafat F.M., Jevrejeva S., Melet A., Prandi P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surveys in Geophysics, 38(1):33-57, 2017.
859
860
[11] Lyszkowicz A.B., Bernatowicz A. Current state of art of satellite altimetry. Geodesy and Cartography, 66(2):259-270, 2017.
861
862
[12] Anzenhofer M., Shum C.K., Renstch M. Coastal altimetry and applications. Dept Geod Sci and Surveying, Ohio State University, Columbus, 1999.
863
864
[13] Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 2011.
865
866
[14] Davis C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Transactions on Geoscience & Remote Sensing, 35(4):974-979, 1997.
867
868
[15] Martin T.V., Zwally H.J., Brenner A.C., Bindschadler R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical Research, 88(C3):1608-1616, 1983.
869
870
[16] Guo J., Hwang C., Chang X., Liu Y. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in Natural Science, 16(7):732-738, 2006.
871
872
[17] Guo J.Y., Gao Y.G., Chang X.T., Hwang C.W. Optimal threshold algorithm of EnviSat waveform retracking over coastal sea. Chinese Journal of Geophysics, 53(4):807-814, 2010b.
873
874
[18] Idris N.H., Deng X. The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Marine Geodesy, 35(sup1):217-237, 2012.
875
876
[19] Passaro M., Cipollini P., Vignudelli S., Quartly G.D., Snaith H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145:173-189, 2014.
877
878
[20] Tseng K.H., Shum C.K., Yi Y., Emery W.J., Kuo C.Y., Lee H., Wang H.H. The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience & Remote Sensing, 52(2):991-1001, 2013.
879
880
[21] Guo J., Chang X., Gao Y., Sun J., Hwang C. Lake level variations monitored with satellite altimetry waveform retracking. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2(2):80-86, 2009.
881
882
[22] Peng F., Deng X. A new retracking technique for Brown peaky altimetric waveforms. Marine Geodesy, 41(2):99-125, 2017.
883
884
[23] Arabsahebi R., Voosoghi B., Tourian M.J. The inflection-point retracking algorithm: improved Jason-2 sea surface heights in the Strait of Hormuz. Marine Geodesy, 41(4):331-352, 2018.
885
886
[24] Brown G. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1):67-74, 1977.
887
888
[25] Dumont J.P., Rosmorduc V., Picot N., Bronner E., Desai S., Bonekamp H. OSTM/Jason-2 products Hand-book. available online [http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf], 2011.
889
890
[26] Deng X., Featherstone W.E., Hwang C., Berry P.A.M. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4):249-271, 2002.
891
892
[27] Benveniste J., Cipollini P., Vignudelli S. Challenges and opportunities for coastal altimetry. Eos Trans. AGU, 98, 2017.
893
894
[28] Amarouche L., Thibaut P., Zanife O.Z., Dumont J.P., Vincent P., Steunou N. Improving the Jason-1 ground retracking to better account for attitude effects. Marine Geodesy, 27(1-2):171-197, 2004.
895
896
[29] Quartly G.D. Optimizing σ0 information from the Jason-2 altimeter. IEEE Geoscience & Remote Sensing Letters, 6(3):398-402, 2009.
897
898
[30] Gommenginger C., Thibaut P., Fenoglio-Marc L., Quartly G., Deng X., Gomez-Enri J., Challenor P., Gao Y. Retracking altimeter waveforms near coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 61-102, 2011.
899
900
[31] Wingham D.J., Rapley C.G., Griffiths H. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS’86 Symposium, Zurich, Switzerland, 8-11 September, 1986.
901
902
[32] Xu X.Y., Birol F., Cazenave A. Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sensing, 10(2):282, 2018.
903
904
[33] Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008(EGM2008). Journal of Geophysical Research, 117:B04406, 2012.
905
906
[34] Khaki M., Forootan E., Sharifi M.A. Satellite radar altimetry waveform retracking over the Caspian Sea. International Journal of Remote Sensing, 35(17):6329-6356, 2014.
907
908
[35] Lee H., Shum C.K., Emery W., Calmant S., Deng X., Kuo C.Y., Roesler C., Yi Y. Validation of Jason-2 altimeter data by waveform retracking over California coastal ocean. Marine Geodesy, 33(sup1):304-316, 2010.
909
910
[36] Fenoglio-Marc L., Dinardo S., Scharroo R., Roland A., Dutour Sikiric M., Lucas B., Becker M., Benveniste J., Weiss R. The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Advances in Spach Research, 55(11):2641-2656, 2015.
911
</div>
912

Return to Li et al 2020b.

Back to Top

Document information

Published on 06/10/20
Accepted on 27/09/20
Submitted on 07/02/20

Volume 36, Issue 4, 2020
DOI: 10.23967/j.rimni.2020.10.002
Licence: CC BY-NC-SA license

Document Score

0

Views 393
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?