You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
==A New Method of Satellite Radar Altimeter Waveform Retracking Based on Waveform Derivative ==
5
6
Zhen Li<sup>1</sup>, Xin Liu<sup>12</sup>, Jinyun Guo<sup>1</sup>, Jiajia Yuan<sup>1</sup>, Yupeng Niu<sup>1</sup>, Bing Ji<sup>3</sup>
7
8
1 College of Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
9
10
2 corresponding author: [mailto:xinliu1969@126.com xinliu1969@126.com]
11
12
3 Department of Navigation, Naval University of Engineering, Wuhan, 430022, Hubei, China
13
-->
14
==Abstract==
15
16
Waveform retracking for precise sea surface height (SSH) is an important method to improve the quality of satellite altimeter data. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical methods, we effort to provide a comprehensive method for processing the waveforms over the open ocean and coastal area. The new retracking method that uses the maximum slope of leading edge to determine midpoint is proposed, the midpoint is determined by zero of second derivative of theoretical model. The unknown parameters are estimated based on the function fitting. Then combined with the advantage of empirical method, the leading edge midpoint is redetermined by interpolating the estimated midpoint on the measured waveform. The new method is validated by comparison with crossover discrepancies, geoid heights and tide gauges. The RMS of crossover discrepancy obtained by new method is 0.107 m, which is smaller than 0.192 m, 0.124 m, 0.121 m, 0.114 m, 0.112 m obtained by Ice-1,Threshold 50%, 5-β, MLE3 and MLE4 retrackers. The STD and improvement percentage of the differences between SSHs obtained by new method and geoid heights are also better than the results of single kind of retracker. Comparison with tide gauge records, the STDs difference of height anomaly obtained by new method are 0.183 m and 0.269 m at different regions, which are smaller than 0.239 m, 0.220 m, 0.195 m and 0.303 m, 0.278 m, 0.272 m obtained by Ice-1, MLE4 and Threshold 50% retrackers, respectively. Therefore, the new method can recover more reliable SSH in the open ocean and coastal area.
17
18
'''Keywords''': Satellite altimeter, waveform retracking, derivative, leading edge slope, crossover discrepancy, tide gauge
19
20
==1. Introduction==
21
22
Satellite altimetry, one of the most powerful technique of remote sensing in measuring ocean surfaces, obtains the sea surface height (SSH), the significant wave height and the backscatter coefficient. A large amount of ocean data has been collected, which provides basic information for oceanography, marine geodesy, geophysics etc. [1-6]. However, in order to get more reliable SSH, it is necessary to make corrections to altimeter data. Unfortunately, although great progress has been made in geophysical and media corrections in the last decade, it is still a challenge for obtaining accurate SSH, especially for processing the radar echo waveform. The echo signal is mainly affected by sea surface condition, bright target and contaminated by land or island. The echo waveform does not conform to the theoretical model, resulting in reduction of range accuracy [7-11].
23
24
In order to improve the accuracy of SSH and the quality of altimeter data, it is necessary to retrack the interfered echo waveform in the open ocean and coastal area. Several retrackers have been developed and are divided into two kinds [12-13]: the empirical statistical method and the function-fitting method, which are based on either full-waveform or sub-waveform. The retracking method based on empirical statistics is an algorithm that relies on empirical formulas, such as Threshold [14] algorithm. This method is of high adaptability and stability, the result of retracking is determined based on the emprical formula. Function fitting algorithm, such as 5-β algorithm [15], selects function form to fit the measured waveform. The algorithm has reliable accuracy, and has clear physical meaning and interpretation. The sub-waveform is defined as the partial waveform by processing multiple leading edges. The most important of the algorithm is the judgment and selection of sub-waveform [16-18], such as ALES [19] algorithm, the sub-waveform is adapting the width of the estimation window according to the significant wave height. For a single kind of retracker, it has certain limitations, for example, the emprical method is lack of physical interpretation and the function fitting method is susceptible to the influence of waveform [20-23]. Due to the complexity of the echo waveform, the accuracy of retracking method is different in the open ocean and coastal area [13]. Therefore, the waveform retracking method need to be further studied.
25
26
According to theoretical analysis and''' '''practical application of echo waveform, the method based on function fitting is still the most rigorous retracking method [19,22]. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical retrackers, we effort to provide a comprehensive waveform retracking method. We expect it can be used to process simultaneously waveforms over the open ocean and coastal area with higher accuracy. The theoretical echo model [24] provides a theoretical basis for waveform research. Based on the analysis of echo power principle and theoretical echo waveform, this paper proposes new methods to determine the leading edge midpoint by using the maximum slope of waveform leading edge. The theoretical echo model is used to derive the first and second derivative function of waveform. The leading edge midpoint is determined by the second derivative zero point. In order to be combined with the measured waveform, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. In the open ocean, through comparison with the crossover discrepancy of SSH and the differece between the retracked SSHs and geoid heights, the accuracy of the new methods is verified. Also, through comparison with the tide gauge records, the adaptable of the new methods is verified by analysis of several retracking methods in the coastal area.
27
28
<span id='_Hlk16842273'></span>
29
==2. Data==
30
31
<span id='_Hlk16842922'></span>
32
===2.1 Satellite radar altimetry===
33
34
In this study, we used the Jason-2 Sensor Geophysical Data Records (SGDRs) within the area of the South China Sea (0 °- 30 ° N, 105 °-125 ° E), which are released by AVISO (Archiving Validation and Interpretation of Satellite Oceanographic data, [http://www.aviso.altimetry.fr/ http://www.aviso.altimetry.fr/]). The SGDRs include waveforms and the state of the art geophysical and environment corrections for altimeter measurements [25]. These altimeter data of passes 012, 051, 088, 114, 153, 190 and 229 were processed from cycles 001 to 200 over the South China Sea (SCS). The passes 051, 229 and 153 are the ascending passes among those passes, and the others are the descending passes. These pass ground tracks are shown in [[#img-1|Figure 1]]. Based on the range correction of waveform retracking and the geophysical corrections extracted from SGDRs, the altimetry-derived SSHs are computed.
35
36
<div id='img-1'></div>
37
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 45%;"
38
|-
39
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image1.png|294px]]
40
|- style="text-align: center; font-size: 75%;"
41
| colspan="1" style="padding:10px;"| '''Figure 1'''. Ground tracks of Jason-2 satellite over the SCS and the two tide gauges (red point represent the tide gauge)
42
|}
43
44
===2.2 In situ tide gauge records===
45
46
<span id='_Hlk16841203'></span><span id='OLE_LINK4'></span><span id='_Hlk16532120'></span>To assess the performance of the new waveform retracking corrected SSH in the coastal area, we compared two tide gauge records in this region. The Quarry Bay tide gauge (QBTG) is located at ~114.22°E, ~22.28°N, near the northern coast of the Hong Kong Island. The tide gauge is located near pass 153 ground track of Jason-2. The Kaohsiung tide gauge (KaohTG) is located at ~120.29°E, ~22.62°N in Taiwan Island. The tide gauge is located near pass 051 ground track of Jason-2. The two tide gauges are shown in [[#img-1|Figure 1]]. The hourly tide gauge records, referred to the WGS84 reference ellipsoid, were available from the Sea Level Center of the University of Hawaii ([https://uhslc.soest.hawaii.edu https://uhslc.soest.hawaii.edu]). We obtained the hourly data from July 2008 to December 2013 for QBTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 200, and the hourly data from July 2008 to July 2013 for KaohTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 186. The altimetry-derived SSHs were determined close to the tide gauge stations. Altimetry-derived SSHs using several waveform retracking methods were compared to the stable tide gauge records.
47
48
==3. Methodology==
49
50
===3.1 Retracking principle of waveform derivative===
51
52
The SSH within the altimeter footprint is approximately symmetric with respect to a certain mean sea level in most cases. The leading edge of echo waveform is an odd function relative to leading edge midpoint [26-27]. The slope of waveform leading edge reaches the maximum value at the midpoint, and the maximum value of the leading edge slope can be derived when the second derivative is equal to zero. The model of echo waveform [19,28] can be expressed as,
53
54
{| class="formulaSCP" style="width: 100%; text-align: center;" 
55
|-
56
| 
57
{| style="text-align: center; margin:auto;" 
58
|-
59
|style="text-align: center;" |  <math>{W}(t)=A_{p} {exp}(-v)(1+{erf}(u))</math>
60
|}
61
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
62
|}
63
64
where
65
66
<math>{\it v}={\it a}{ [(t}-{ t}_{{ 0}} { )}-\frac{{ a}}{{ 2}} { \sigma }_{{ c}}^{{ 2}} { ]}</math>
67
68
<math>{\it u}=\frac{{ (t}-{ t}_{{ 0}} { )}-{ a}\times { \sigma }_{{ c}}^{{ 2}} }{\sqrt{{ 2}} { \sigma }_{{ c}} }</math>
69
70
<math>{\it a}={\it \alpha }-\frac{\beta^2}{4}</math>
71
72
<math>{\alpha }=\frac{ln4}{sin^2 (\theta / 2)}  \times \frac{{ c}}{{ h}} \times \frac{1}{1+ h/R} \times cos(2\xi )</math>
73
74
<math>{\it \beta }=\frac{ln4}{sin^2 (\theta / 2)} \times \sqrt{\frac{{ c}}{{ h}} \times \frac{1}{1+ h/R} } \times { sin(2\xi )}</math>
75
76
<math>A_{{\it p}} =\frac{{\it A}_{{\it 0}} }{{ 2}} { exp(-}\frac{{ 4}}{{ \gamma }} { sin}^{{ 2}} { \xi )}</math>
77
78
79
in which <math>h</math>  is the height of satellite,  <math>R</math> is the radius of the Earth, <math>c</math> is the speed of light in vacuum,  <math>A_0</math> is the amplitude of waveform,  <math>\theta</math> is the antenna beam width of satellite altimeter,  <math>\xi</math> is the off-nadir mispointing angle,  <math>t_0</math> is the time migration with respect to the nominal tracking gate,  <math>{ \sigma }_{{ c}}</math> is the rise time of the leading edge linked to the significant wave height,  <math>\gamma</math> represents the parameter related to the beam width, and  <math>erf(x)</math> is the error function.
80
81
From Equation (1), the functions of first and second waveform derivative are given as
82
83
{| class="formulaSCP" style="width: 100%; text-align: center;" 
84
|-
85
| 
86
{| style="text-align: center; margin:auto;" 
87
|-
88
| style="text-align: center;" |  <math>{\it W}^{{\it '}} { (t)}={ A}_{{ p}} \times { exp(}-{ v)[}-{ a}\times { (1}+{ erf(u))}+\frac{\sqrt{{ 2}} }{\sqrt{{ \pi }} { \sigma }_{{ c}} } \times { exp(}-{ u}^{{ 2}} { )]}</math>
89
|}
90
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
91
|}
92
93
{| class="formulaSCP" style="width: 100%; text-align: center;" 
94
|-
95
| 
96
{| style="text-align: center; margin:auto;" 
97
|-
98
| style="text-align: center;" |  <math> {\it W}^{{\it ''}} { (t)}={ A}_{{ p}} \times { exp(}-{ v)}\times { [a}^{{ 2}} \times { 1}+{ erf(u))-}\frac{{ 2}\sqrt{{ 2}} { a\; }}{\sqrt{{ \pi }} { \sigma }_{{ c}} } \times { exp(}-{ u}^{{ 2}} { )-}\frac{{ 2u}}{\sqrt{{ \pi }} { \sigma }_{c}^{{ 2}} } \times { exp(}-{ u}^{{ 2}} { )]} </math>
99
|}
100
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)              
101
|}
102
103
when   <math> {\it W}'' { (t)}=0</math>, the leading edge midpoint <math> (t_m)</math> where the leading edge slope is maximum can be computed, that is
104
105
{| class="formulaSCP" style="width: 100%; text-align: center;" 
106
|-
107
| 
108
{| style="text-align: center; margin:auto;" 
109
|-
110
| style="text-align: center;" |  <math>{\it t}_{{\it m}} ={\it t}_{{\it 0}} { -a\sigma }_{{\it c}}^{{ 2}}</math>
111
|}
112
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
113
|}
114
115
116
For Equation (4), the unknown parameters <math> t_{0}\, ,\sigma_c</math> need to be solved.
117
118
===3.2 Midpoint Determination based on the measured waveform===
119
120
Generally there are three parameters (<math>{\it A}_{{\it 0}},\, {\it t}_{{\it 0}}, \, {\it \sigma }_{{\it c}}</math>) that need to be estimated in that there is a strong correlation between the waveform amplitude parameter and the off-nadir mispointing angle parameter [29], and the the off-nadir mispointing angle is usually less than 0.3° [18,19]. These parameters are obtained with the least squares estimator by using the Equation (1) to fit the measured waveform. The error equation is:
121
122
{| class="formulaSCP" style="width: 100%; text-align: center;" 
123
|-
124
| 
125
{| style="text-align: center; margin:auto;" 
126
|-
127
| style="text-align: center;" | <math>{\bf V}={\bf AX}-{\bf L}  </math>
128
|}
129
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
130
|}
131
132
133
where  <math display="inline"> \bf L</math> is a vector that indicates the difference between the measured waveform and the estimated waveform by Equation (1), <math display="inline"> {\bf X}(dA_0,dt_0,d\sigma_c</math> is the correction vector of unknown parameters, and <math display="inline"> \bf A</math>  is the partial derivative matrix as
134
135
{| class="formulaSCP" style="width: 100%; text-align: center;" 
136
|-
137
| 
138
{| style="text-align: center; margin:auto;" 
139
|-
140
| style="text-align: center;" | <math>{\bf A}=\left[\begin{array}{ccc} {\left. \displaystyle\frac{\partial {\it W}}{\partial {\it t}_{{\it 0}} } \right|_{{\it t}={ 1}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ 1}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ 1}} } \\ {\left. \displaystyle\frac{\partial { W}}{\partial { t}_{{ 0}} } \right|_{{ t}={ 2}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ 2}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ 2}} } \\ {\vdots } & {\vdots } & {\vdots } \\ {\left. \displaystyle\frac{\partial { W}}{\partial { t}_{{ 0}} } \right|_{{ t}={ n}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { \sigma }_{{ c}} } \right|_{{ t}={ n}} } & {\left. \displaystyle\frac{\partial { W}}{\partial { A}_{{ 0}} } \right|_{{ t}={ n}} } \end{array}\right]</math> 
141
|}
142
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)                                  
143
|}
144
145
in which the three partial derivatives of the unknown parameter are as following:
146
147
{| class="formulaSCP" style="width: 100%; text-align: center;" 
148
|-
149
| 
150
{| style="text-align: center; margin:auto;" 
151
|-
152
| [[Image:Draft_Liu_514209790-image36.png|516px]]
153
|}
154
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
155
|}
156
157
{| class="formulaSCP" style="width: 100%; text-align: center;" 
158
|-
159
| 
160
{| style="text-align: center; margin:auto;" 
161
|-
162
| [[Image:Draft_Liu_514209790-image37.png|516px]]
163
|}
164
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
165
|}
166
167
{| class="formulaSCP" style="width: 100%; text-align: center;" 
168
|-
169
| 
170
{| style="text-align: center; margin:auto;" 
171
|-
172
| [[Image:Draft_Liu_514209790-image38.png|336px]]
173
|}
174
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)         
175
|}
176
177
178
Due to the waveform samples are decorrelation between the range gates [27,30], these unknown parameters are estimated with the least squares estimator as:
179
180
{| class="formulaSCP" style="width: 100%; text-align: center;" 
181
|-
182
| 
183
{| style="text-align: center; margin:auto;" 
184
|-
185
| [[Image:Draft_Liu_514209790-image39.png|144px]]
186
|}
187
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
188
|}
189
190
191
<span id='_Hlk16865042'></span>The initial value will affect parameters estimation. The initial value of unknown parameters are determined by using Off-Center of Gravity (OCOG) algorithm [31]. The unknown parameters are estimated until iterative convergence. The convergence criterion is based on the merit function  [[Image:Draft_Liu_514209790-image40.png|18px]] defined by:
192
193
{| class="formulaSCP" style="width: 100%; text-align: center;" 
194
|-
195
| 
196
{| style="text-align: center; margin:auto;" 
197
|-
198
| [[Image:Draft_Liu_514209790-image41.png|108px]]
199
|}
200
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)                        
201
|}
202
203
204
where  [[Image:Draft_Liu_514209790-image42.png|18px]] is the difference between the estimated waveform and the measured waveform.
205
206
<span id='_Hlk16928418'></span><span id='_Hlk16690821'></span><span id='_Hlk16928355'></span>The leading edge midpoint is computed via Equation (4). This leading edge midpoint obtained by this way is called the first wave derivative retracker (FWDR) in this paper. However, the midpoint is only determined by the parameter  [[Image:Draft_Liu_514209790-image24.png|12px]] [27], is called as MLE3 and MLE4 retracker. Our main improvement is that the leading edge midpoint is determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) instead of one ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
207
208
<span id='_Hlk16867686'></span><span id='_Hlk16867895'></span><span id='_Hlk16930319'></span><span id='_Hlk16868145'></span>The leading edge midpoint determined based on the function-fitting method is possbile not on the measured waveform. In order to more accurately determine the leading edge midpoint on the measured waveform, combining the advantages of the empirical statistical retracker (similar to Threshold 50% method), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. This leading edge midpoint obtained by this way is called the first leading edge interpolation retracker (FLEIR), that is:
209
210
{| class="formulaSCP" style="width: 100%; text-align: center;" 
211
|-
212
| 
213
{| style="text-align: center; margin:auto;" 
214
|-
215
| <span id='_Hlk16930144'></span>                   [[Image:Draft_Liu_514209790-image43.png|192px]]
216
|}
217
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
218
|}
219
220
221
<span id='_Hlk16622485'></span><span id='OLE_LINK2'></span>where  <math display="inline">t_m</math> is the re-determined leading edge midpoint,  [[Image:Draft_Liu_514209790-image45.png|12px]] is the midpoint power from the estimated waveform by Equation (1),  [[Image:Draft_Liu_514209790-image46.png|18px]] the first gate (sampling) position beyond the theoretical midpoint power, and  [[Image:Draft_Liu_514209790-image47.png|18px]] and  [[Image:Draft_Liu_514209790-image48.png|24px]] are the measured waveform power values respectively.
222
223
<span id='_Hlk16926934'></span>
224
225
===3.3 Midpoint determination the based on the first-order difference quotient of waveform===
226
227
<span id='_Hlk16929773'></span><span id='_Hlk16687014'></span>The leading edge midpoint is determined based on the first-order difference quotient of waveform. The waveform is actually a discrete set of echo power on the sampling interval of the altimeter. The power of each gate is composed of the echo signal of reflective surface and noise. The noise of adjacent sampling gate is similar, and can be reduced by the first-order difference quotient. Thus, the unknown parameters can be estimated by using the Equation (2) to fit the first-order difference quotient. Then, the leading edge midpoint can be computed with Equation (4).
228
229
<span id='_Hlk16927062'></span><span id='_Hlk16930611'></span>The first-order difference quotient of waveform,   [[Image:Draft_Liu_514209790-image49.png|54px]] , can be computed as,
230
231
{| class="formulaSCP" style="width: 100%; text-align: center;" 
232
|-
233
| 
234
{| style="text-align: center; margin:auto;" 
235
|-
236
| [[Image:Draft_Liu_514209790-image50.png|186px]]
237
|}
238
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
239
|}
240
241
242
<span id='_Hlk16927182'></span>where  [[Image:Draft_Liu_514209790-image51.png|48px]] and  [[Image:Draft_Liu_514209790-image52.png|36px]] are the echo powers corresponding to gate  [[Image:Draft_Liu_514209790-image53.png|42px]] and  [[Image:Draft_Liu_514209790-image54.png|12px]] respectively, while  [[Image:Draft_Liu_514209790-image55.png|18px]] is the sampling interval. Equation (13) indicates that the  [[Image:Draft_Liu_514209790-image49.png|54px]] is correlated between different gates based on the covariance propagation law.
243
244
Similarly, these unknown parameters are estimated with the least squares method. The error equation is:
245
246
{| class="formulaSCP" style="width: 100%; text-align: center;" 
247
|-
248
| 
249
{| style="text-align: center; margin:auto;" 
250
|-
251
| [[Image:Draft_Liu_514209790-image56.png|114px]]
252
|}
253
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
254
|}
255
256
257
where  [[Image:Draft_Liu_514209790-image57.png|18px]] is a vector that indicates the difference between the estimated by Equation (2) and the first order difference quotient of waveform,  [[Image:Draft_Liu_514209790-image58.png|12px]] ( [[Image:Draft_Liu_514209790-image59.png|24px]] ,  [[Image:Draft_Liu_514209790-image60.png|18px]] ,  [[Image:Draft_Liu_514209790-image61.png|24px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image62.png|18px]] is the partial derivative matrix as
258
259
{| class="formulaSCP" style="width: 100%; text-align: center;" 
260
|-
261
| 
262
{| style="text-align: center; margin:auto;" 
263
|-
264
| [[Image:Draft_Liu_514209790-image63.png|240px]]
265
|}
266
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
267
|}
268
269
270
The three partial derivatives of the unknown parameters based on the function of first derivatives are formulated as,
271
272
{| class="formulaSCP" style="width: 100%; text-align: center;" 
273
|-
274
| 
275
{| style="text-align: center; margin:auto;" 
276
|-
277
| [[Image:Draft_Liu_514209790-image64.png|600px]]
278
|}
279
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)            
280
|}
281
282
{| class="formulaSCP" style="width: 100%; text-align: center;" 
283
|-
284
| 
285
{| style="text-align: center; margin:auto;" 
286
|-
287
| [[Image:Draft_Liu_514209790-image65.png|600px]]
288
|}
289
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)   
290
|}
291
292
{| class="formulaSCP" style="width: 100%; text-align: center;" 
293
|-
294
| 
295
{| style="text-align: center; margin:auto;" 
296
|-
297
| [[Image:Draft_Liu_514209790-image66.png|444px]]
298
|}
299
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
300
|}
301
302
303
<span id='_Hlk16927232'></span>Due to the difference quotient  [[Image:Draft_Liu_514209790-image67.png|66px]] is computed by equation (13), it is correlated between different gates based on the covariance propagation law. The unknown parameters are estimated with the least squares estimator as:
304
305
{| class="formulaSCP" style="width: 100%; text-align: center;" 
306
|-
307
| 
308
{| style="text-align: center; margin:auto;" 
309
|-
310
| [[Image:Draft_Liu_514209790-image68.png|192px]]
311
|}
312
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
313
|}
314
315
316
where  [[Image:Draft_Liu_514209790-image69.png|12px]] is the weight matrix as
317
318
{| class="formulaSCP" style="width: 100%; text-align: center;" 
319
|-
320
| 
321
{| style="text-align: center; margin:auto;" 
322
|-
323
| [[Image:Draft_Liu_514209790-image70.png|246px]]
324
|}
325
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
326
|}
327
328
329
The initial values of the unknown parameters are also determined by the OCOG algorithm. The unknown parameters are estimated until iterative convergence (the convergence criterion is similar to Equation 11). The waveform leading edge midpoint is computed via Equation (4). The midpoint obtained by this way is called the second wave derivative retracker (SWDR) in this paper.
330
331
<span id='_Hlk16930537'></span>Similar to Equation (12), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. The midpoint obtained by this way is called the second leading edge interpolation retracker (SLEIR).
332
333
A flow chart of the new waveform retracking is shown in [[#img-2|Figure 2]].
334
335
<div id='img-2'></div>
336
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
337
|-
338
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image71.png|384px]]
339
|- style="text-align: center; font-size: 75%;"
340
| colspan="1" style="padding-bottom:10px;"| '''Figure 2'''. Flow chart of waveform retracking based on waveform derivative
341
|}
342
343
=4. Experiment Results and Analysis=
344
345
<span id='_Hlk16781048'></span><span id='_Hlk16779792'></span>
346
===4.1 Comparison with crossover discrepancies of SSHs===
347
348
<span id='_Hlk16779736'></span><span id='_Hlk16839022'></span><span id='_Hlk16781462'></span>The crossover is the intersection of two tracks between ascending pass and descending pass. The crossover discrepancy of SSHs is an evaluation criterion of waveform retracking method in the open ocean. To obtain the statistical results, we define SSH as given by
349
350
{| class="formulaSCP" style="width: 100%; text-align: center;" 
351
|-
352
| 
353
{| style="text-align: center; margin:auto;" 
354
|-
355
| [[Image:Draft_Liu_514209790-image72.png|600px]]
356
|}
357
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
358
|}
359
360
<span id='_Hlk16780874'></span>where  [[Image:Draft_Liu_514209790-image73.png|24px]] is the altitude of Jason-2 satellite,  [[Image:Draft_Liu_514209790-image74.png|54px]] is the range between satellite and reflective surface (partial instrumental corrections included, i.e. distance antenna-COG, USO drift correction, internal path correction),  [[Image:Draft_Liu_514209790-image75.png|54px]] is the Doppler correction,  [[Image:Draft_Liu_514209790-image76.png|54px]] is the modeled instrumental correction,  [[Image:Draft_Liu_514209790-image77.png|84px]] is the system bias of instrument,  [[Image:Draft_Liu_514209790-image78.png|42px]] is the dry tropospheric correction which is calculated from the atmospheric pressure and tide published by the European Centre for Medium-range Weather Forecasts (ECMWF),  [[Image:Draft_Liu_514209790-image79.png|48px]] is the wet tropospheric correction, which is calculated from the data measured by the microwave radiometer carried by the satellite,  [[Image:Draft_Liu_514209790-image80.png|48px]] is the ionospheric delay corrected using Dual-frequency,  [[Image:Draft_Liu_514209790-image81.png|54px]] is the sea state bias correction, which is calculated by empirical fitting of significant wave height and wind speed,  [[Image:Draft_Liu_514209790-image82.png|42px]] (inverted barometer correction) and  [[Image:Draft_Liu_514209790-image83.png|42px]] (high frequency atmospheric pressure loading correction) are the dynamic atmospheric corrections,  [[Image:Draft_Liu_514209790-image84.png|42px]] is the geocentric ocean tide height correction, obtained by GOT4.10 model,  [[Image:Draft_Liu_514209790-image85.png|42px]] is the solid earth tide height correction, and  [[Image:Draft_Liu_514209790-image86.png|36px]] is the pole tide height correction. These above corrections are available in the SGDRs.
361
362
<span id='_Hlk16781311'></span>The range correction  [[Image:Draft_Liu_514209790-image87.png|48px]] of waveform retracking is given by
363
364
{| class="formulaSCP" style="width: 100%; text-align: center;" 
365
|-
366
| 
367
{| style="text-align: center; margin:auto;" 
368
|-
369
| [[Image:Draft_Liu_514209790-image88.png|222px]]
370
|}
371
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
372
|}
373
374
375
where  [[Image:Draft_Liu_514209790-image89.png|12px]] is the leading edge midpoint,  [[Image:Draft_Liu_514209790-image90.png|12px]] the nominal tracking gate ( [[Image:Draft_Liu_514209790-image91.png|12px]] =32 gate of Jason-2 altimeter wavefrom),  [[Image:Draft_Liu_514209790-image92.png|30px]] the sampling interval of a gate (1 gate=3.125 ns of Jason-2 altimeter).
376
377
<span id='_Hlk16839791'></span><span id='_Hlk16779852'></span>The waveform data of cycles 001 to 200 are processed. For assessing the performance of the new retracker, we compared the retracked SSH from Threshold 50%, OCOG and 5-β retrackers, as well as the Ice-1 and MLE4 ( or Ocean) retrackers from SGDRs. Also, we obtained the ALES [19] retracked SSH data ([http://openadb.dgfi.tum.de/ http://openadb.dgfi.tum.de/]), which is widely recognized as a high-precision SSH products [22,32]. The retracked SSHs and the crossover discrepancies of SSHs in each cycle were computed. Some data of cycles are missing (Such as cycles 174, 175, 190, 191), and the gross error (>1 m) of the crossover discrepancies of SSHs are removed. There are 1502 crossover discrepancies in total. The statistics of crossover discrepancies of SSHs obtained by several retrackers are listed in [[#tab-1|Table 1]]. The Unretracked represents the raw SSHs without waveform retracking.
378
379
By analyzing the RMS of the crossover discrepancies of SSHs, it is found that the results of several retracking methods are smaller than unretracked results, indicating that the waveform retracking can reduce the RMS of crossover discrepancies of SSH and improve the quality of satellite altimeter data. The RMSs obtained by FWDR, FLEIR, SWDR and SLEIR are 0.108 m, 0.107 m, 0.114 m and 0.119 m, which are smaller than 0.124 m, 0.177 m and 0.121 m obtained by Threshold 50%, OCOG and 5-β methods, respectively, indicating that the new methods can get more accurate results than the common methods in this region. The RMSs obtained by new mthods, which are less than 0.192 m, and 0.112 m obtained by Ice-1 and MLE4 methods from SGDR data, indicating that it can provide more accurate results than SGDRs (retracked SSH by MLE4, Ice-1 retracker) in the open ocean. In addition, the RMSs obtained by FWDR and FLEIR are 0.108 m and 0.107 m, which are smaller than 0.114 m obtained by MLE3 retracker, indicating that the midpoint determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) is more accurate than one parameter ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
380
381
<div class="center" style="font-size: 75%;">'''Table 1'''. Statistics of crossover discrepancies of SSHs obtained by several retracking methods (Unit: m)</div>
382
383
<div id='tab-1'></div>
384
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
385
|-style="text-align:center"
386
! Retracker !! MAX !! MIN !! MEAN !! STD !! RMS
387
|-
388
|  style="text-align: center;vertical-align: top;"|Unretracked
389
|  style="text-align: center;vertical-align: top;"|0.996
390
|  style="text-align: center;vertical-align: top;"|-0.805
391
|  style="text-align: center;vertical-align: top;"|0.001
392
|  style="text-align: center;vertical-align: top;"|0.225
393
|  style="text-align: center;vertical-align: top;"|0.225
394
|-
395
|  style="text-align: center;vertical-align: top;"|Threshold(50%)
396
|  style="text-align: center;vertical-align: top;"|0.936
397
|  style="text-align: center;vertical-align: top;"|-0.714
398
|  style="text-align: center;vertical-align: top;"|-0.004
399
|  style="text-align: center;vertical-align: top;"|0.124
400
|  style="text-align: center;vertical-align: top;"|0.124
401
|-
402
|  style="text-align: center;vertical-align: top;"|OCOG
403
|  style="text-align: center;vertical-align: top;"|0.940
404
|  style="text-align: center;vertical-align: top;"|-0.981
405
|  style="text-align: center;vertical-align: top;"|-0.005
406
|  style="text-align: center;vertical-align: top;"|0.177
407
|  style="text-align: center;vertical-align: top;"|0.177
408
|-
409
|  style="text-align: center;vertical-align: top;"|5-β
410
|  style="text-align: center;vertical-align: top;"|0.692
411
|  style="text-align: center;vertical-align: top;"|-0.692
412
|  style="text-align: center;vertical-align: top;"|-0.007
413
|  style="text-align: center;vertical-align: top;"|0.120
414
|  style="text-align: center;vertical-align: top;"|0.121
415
|-
416
|  style="text-align: center;vertical-align: top;"|Ice-1
417
|  style="text-align: center;vertical-align: top;"|0.783
418
|  style="text-align: center;vertical-align: top;"|-0.774
419
|  style="text-align: center;vertical-align: top;"|-0.031
420
|  style="text-align: center;vertical-align: top;"|0.190
421
|  style="text-align: center;vertical-align: top;"|0.192
422
|-
423
|  style="text-align: center;vertical-align: top;"|MLE3
424
|  style="text-align: center;vertical-align: top;"|0.716
425
|  style="text-align: center;vertical-align: top;"|-0.506
426
|  style="text-align: center;vertical-align: top;"|-0.005
427
|  style="text-align: center;vertical-align: top;"|0.114
428
|  style="text-align: center;vertical-align: top;"|0.114
429
|-
430
|  style="text-align: center;vertical-align: top;"|MLE4
431
|  style="text-align: center;vertical-align: top;"|0.773
432
|  style="text-align: center;vertical-align: top;"|-0.652
433
|  style="text-align: center;vertical-align: top;"|-0.004
434
|  style="text-align: center;vertical-align: top;"|0.112
435
|  style="text-align: center;vertical-align: top;"|0.112
436
|-
437
|  style="text-align: center;vertical-align: top;"|ALES
438
|  style="text-align: center;vertical-align: top;"|0.741
439
|  style="text-align: center;vertical-align: top;"|-0.724
440
|  style="text-align: center;vertical-align: top;"|-0.002
441
|  style="text-align: center;vertical-align: top;"|0.105
442
|  style="text-align: center;vertical-align: top;"|0.105
443
|-
444
|  style="text-align: center;vertical-align: top;"|FWDR
445
|  style="text-align: center;vertical-align: top;"|0.693
446
|  style="text-align: center;vertical-align: top;"|-0.524
447
|  style="text-align: center;vertical-align: top;"|-0.003
448
|  style="text-align: center;vertical-align: top;"|0.108
449
|  style="text-align: center;vertical-align: top;"|0.108
450
|-
451
|  style="text-align: center;vertical-align: top;"|FLEIR
452
|  style="text-align: center;vertical-align: top;"|0.696
453
|  style="text-align: center;vertical-align: top;"|-0.623
454
|  style="text-align: center;vertical-align: top;"|-0.003
455
|  style="text-align: center;vertical-align: top;"|0.107
456
|  style="text-align: center;vertical-align: top;"|0.107
457
|-
458
|  style="text-align: center;vertical-align: top;"|SWDR
459
|  style="text-align: center;vertical-align: top;"|0.740
460
|  style="text-align: center;vertical-align: top;"|-0.714
461
|  style="text-align: center;vertical-align: top;"|0.000
462
|  style="text-align: center;vertical-align: top;"|0.114
463
|  style="text-align: center;vertical-align: top;"|0.114
464
|-
465
|  style="text-align: center;vertical-align: top;"|SLEIR
466
|  style="text-align: center;vertical-align: top;"|0.772
467
|  style="text-align: center;vertical-align: top;"|-0.749
468
|  style="text-align: center;vertical-align: top;"|-0.005
469
|  style="text-align: center;vertical-align: top;"|0.119
470
|  style="text-align: center;vertical-align: top;"|0.119
471
|}
472
473
474
Furthermore, we comparison with the retracked SSH by ALES retraker. The RMS obtained by FLEIR is 0.107 m, which is slightly smaller than 0.105 m obtained by ALES products. The difference may be caused by different correction models, such as sea state bias correction and ocean tide correction. This also shown that the retracked SSH by new methods is reliable compared with the SSH obtained by ALES products.
475
476
<span id='_Hlk16924105'></span><span id='_Hlk16781133'></span>
477
===4.2 Comparison with geoid heights ===
478
479
In order to contrast and analyze the retracked SSHs, the regional geoid heights are derived from the Earth Gravity Field Model EGM2008 [33] up to degree 2160 (Http://icgem.gfz-postdam.de/ICGEM). The performance of retracked SSHs can be assessed in comparison with geoid heights [7,34].
480
481
If the retracked SSHs did not resemble the geoid heights, then the retracked SSHs was considered to be not valid, even if it had been able to correct the errors of SSH [6,9,35]. The correlation coefficient and improvement of percentage (IMP) of the difference between retracked SSHs and geoid heights are used to analyze the quality of retracked SSHs. It is widely accepted that the higher the IMP value is, the better the retracked result is. The IMP can be computed as
482
483
{| class="formulaSCP" style="width: 100%; text-align: center;" 
484
|-
485
| 
486
{| style="text-align: center; margin:auto;" 
487
|-
488
| [[Image:Draft_Liu_514209790-image93.png|222px]]
489
|}
490
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
491
|}
492
493
494
where  [[Image:Draft_Liu_514209790-image94.png|36px]] is the improvement percentage,  [[Image:Draft_Liu_514209790-image95.png|30px]] is the STD of the difference between geoid heights and SSHs without waveform retracking correction.  [[Image:Draft_Liu_514209790-image96.png|48px]] is the STD of the difference between geoid heights and altimetry-derived SSHs with waveform retracking correction.
495
496
[[#img-3|Figure 3]]  shows retracked SSHs and geoid heights of by several methods. For the image to be clearly distinguishable, we only show results from the Ice-1, MLE4, Threshold 50% and FLEIR methods.
497
498
<div id='img-3'></div>
499
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
500
|-
501
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image97.png|600px]]
502
|- style="text-align: center; font-size: 75%;"
503
| colspan="1" style="padding-bottom:10px;"| '''Figure 3'''. Comparison of the Ice-1, MLE4, Threshold 50%, FLEIR retracked SSHs and geoid heights
504
|}
505
506
507
[[#tab-2|Table 2]] gives the statistical results of the IMP and correlation coefficient of the differences between retracked SSHs (cycle010pass229) and geoid heights. The cycle is selected randomly, and using other cycles will not alter our findings.
508
509
<div class="center" style="font-size: 75%;">'''Table 2'''.  Statistics of the differences between retracked SSHs and geoid heights (Unit: m)</div>
510
511
<div id='tab-2'></div>
512
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
513
|-style="text-align:center"
514
! Retracker !! MAX !! MIN !! MEAN !! STD !! IMP/(%) !! Correlation coefficient 
515
|-
516
|  style="text-align: center;"|Unretracked
517
|  style="text-align: center;"|2.118
518
|  style="text-align: center;"|0.388
519
|  style="text-align: center;"|1.149
520
|  style="text-align: center;"|0.265
521
|  style="text-align: center;"|
522
|  style="text-align: center;"|0.921
523
|-
524
|  style="text-align: center;"|Threshold(50%)
525
|  style="text-align: center;"|2.799
526
|  style="text-align: center;"|0.913
527
|  style="text-align: center;"|1.551
528
|  style="text-align: center;"|0.222
529
|  style="text-align: center;"|16.2%
530
|  style="text-align: center;"|0.940
531
|-
532
|  style="text-align: center;"|OCOG 
533
|  style="text-align: center;"|3.096
534
|  style="text-align: center;"|0.517
535
|  style="text-align: center;"|2.075
536
|  style="text-align: center;"|0.273
537
|  style="text-align: center;"|-3.0%
538
|  style="text-align: center;"|0.920
539
|-
540
|  style="text-align: center;"|Βeta-5
541
|  style="text-align: center;"|3.104
542
|  style="text-align: center;"|0.906
543
|  style="text-align: center;"|1.461
544
|  style="text-align: center;"|0.226
545
|  style="text-align: center;"|14.7%
546
|  style="text-align: center;"|0.939
547
|-
548
|  style="text-align: center;"|Ice-1
549
|  style="text-align: center;"|3.144
550
|  style="text-align: center;"|1.328
551
|  style="text-align: center;"|1.777
552
|  style="text-align: center;"|0.239
553
|  style="text-align: center;"|9.8%
554
|  style="text-align: center;"|0.930
555
|-
556
|  style="text-align: center;"|MLE4
557
|  style="text-align: center;"|2.775
558
|  style="text-align: center;"|0.959
559
|  style="text-align: center;"|1.463
560
|  style="text-align: center;"|0.225
561
|  style="text-align: center;"|15.1%
562
|  style="text-align: center;"|0.939
563
|-
564
|  style="text-align: center;vertical-align: top;"|FWDR
565
|  style="text-align: center;"|2.700
566
|  style="text-align: center;"|0.928
567
|  style="text-align: center;"|1.456
568
|  style="text-align: center;"|0.217
569
|  style="text-align: center;"|18.1%
570
|  style="text-align: center;"|0.944
571
|-
572
|  style="text-align: center;vertical-align: top;"|FLEIR
573
|  style="text-align: center;"|2.601
574
|  style="text-align: center;"|0.946
575
|  style="text-align: center;"|1.456
576
|  style="text-align: center;"|0.216
577
|  style="text-align: center;"|18.5%
578
|  style="text-align: center;"|0.944
579
|-
580
|  style="text-align: center;vertical-align: top;"|SWDR
581
|  style="text-align: center;"|2.533
582
|  style="text-align: center;"|0.921
583
|  style="text-align: center;"|1.480
584
|  style="text-align: center;"|0.219
585
|  style="text-align: center;"|17.4%
586
|  style="text-align: center;"|0.943
587
|-
588
|  style="text-align: center;vertical-align: top;"|SLEIR
589
|  style="text-align: center;"|2.739
590
|  style="text-align: center;"|0.909
591
|  style="text-align: center;"|1.458
592
|  style="text-align: center;"|0.226
593
|  style="text-align: center;"|14.7%
594
|  style="text-align: center;"|0.939
595
|}
596
597
598
[[#tab-2|Table 2]] provides a summary of results, where the STD (0.265 m) of the difference is large, which indicates that the unretracked SSH has poor smoothness and fluctuation. After waveform retracking, the STD is reduced, and the smoothness of SSH is improved, which eliminated large abrupt changes and maintained good smoothness of SSH. The IMP and correlation coefficient obtained by new methods are better than the results of the common methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4% and 14.7%, respectively, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1, and MLE4 methods are 16.2%, -3.0%, 14.7%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR and SLEIR are 0.944, 0.944, 0.943 and 0.939 respectively, while the value obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 are 0.940, 0.920, 0.939, 0.930 and 0.939.
599
600
Therefore, it is concluded that the new proposed retracking methods in this paper are reliable, and exhibit better performance than the common retrackers.
601
602
<span id='_Hlk16924416'></span>
603
===4.3 Comparsion with tide gauge records===
604
605
In addition, we compared the retracked SSH using several retracking methods with the tide gauge records in the coastal area. As the tide gauge records are not corrected for tidal and dynamic atmospheric effects, we also do not apply these corrections to the altimeter data by employing [23,36]
606
607
{| class="formulaSCP" style="width: 100%; text-align: center;" 
608
|-
609
| 
610
{| style="text-align: center; margin:auto;" 
611
|-
612
| [[Image:Draft_Liu_514209790-image98.png|600px]]
613
|}
614
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
615
|}
616
617
618
<span id='_Hlk16782260'></span>where  [[Image:Draft_Liu_514209790-image99.png|36px]] is the solid earth tide correction; the other corrections is the same as Equation (21), and all corrections are available in the SGDRs.
619
620
<span id='_Hlk16779974'></span>The hourly tide gauge records were interpolated to the time of the altimeter measurement. To avoid possible discrepancy datum of both altimetry-derived SSHs and tide gauge records, the temporal mean is removed from each time series, referring to as height anomaly [15]. For assessed the performance of the retracked SSH in the coastal area, we have categorized the altimetry-derived SSH to two spatial intervasl: namely 10-20 km and 0-10 km away from coastline, correspond to cases 1 and 2, respectively. Finally, the correlation coefficient and STD of the difference between height anomaly from several retrackers and tide gauge records were computed.
621
622
In the near QBTG, the height anomaly from several retrackers and tide gauge records in cases 1 and 2 are shown in Figures [[#img-4|4]]  and [[#img-5|5]], respectively. For the image to be clearly distinguishable, we only shown results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
623
624
<div id='img-4'></div>
625
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
626
|-
627
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image100.png|600px]]
628
|- style="text-align: center; font-size: 75%;"
629
| colspan="1" style="padding:10px;"| '''Figure 4'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50% and FLEIR retrackers and QBTG records in case 1 
630
|}
631
632
<div id='img-4'></div>
633
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
634
|-
635
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image101.png|600px]]
636
|- style="text-align: center; font-size: 75%;"
637
| colspan="1" style="padding-bottom:10px;"| '''Figure 5'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and QBTG records in case 2
638
|}
639
640
641
[[#tab-3|Table 3]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and QBTG records in cases 1 and 2.
642
643
<div class="center" style="font-size: 75%;">'''Table 3'''. Statistical results of height anomaly between the retracked SSH and QBTG records</div>
644
645
<div id='tab-3'></div>
646
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
647
|-style="text-align:center"
648
! rowspan='2' | Retracker !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
649
|-
650
|  style="text-align: center;"|STD (m)
651
|  style="text-align: center;"|Correlation coefficient
652
|  style="text-align: center;"|STD (m)
653
|  style="text-align: center;"|Correlation coefficient
654
|-
655
|  style="text-align: center;vertical-align: top;"|Unretracked
656
|  style="text-align: center;vertical-align: top;"|0.302
657
|  style="text-align: center;vertical-align: top;"|0.789
658
|  style="text-align: center;vertical-align: top;"|0.370
659
|  style="text-align: center;vertical-align: top;"|0.666
660
|-
661
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
662
|  style="text-align: center;vertical-align: top;"|0.248
663
|  style="text-align: center;vertical-align: top;"|0.854
664
|  style="text-align: center;vertical-align: top;"|0.272
665
|  style="text-align: center;vertical-align: top;"|0.820
666
|-
667
|  style="text-align: center;vertical-align: top;"|OCOG
668
|  style="text-align: center;vertical-align: top;"|0.271
669
|  style="text-align: center;vertical-align: top;"|0.813
670
|  style="text-align: center;vertical-align: top;"|0.334
671
|  style="text-align: center;vertical-align: top;"|0.729
672
|-
673
|  style="text-align: center;vertical-align: top;"|5-β
674
|  style="text-align: center;vertical-align: top;"|0.237
675
|  style="text-align: center;vertical-align: top;"|0.858
676
|  style="text-align: center;vertical-align: top;"|0.293
677
|  style="text-align: center;vertical-align: top;"|0.786
678
|-
679
|  style="text-align: center;vertical-align: top;"|Ice-1
680
|  style="text-align: center;vertical-align: top;"|0.262
681
|  style="text-align: center;vertical-align: top;"|0.837
682
|  style="text-align: center;vertical-align: top;"|0.303
683
|  style="text-align: center;vertical-align: top;"|0.778
684
|-
685
|  style="text-align: center;vertical-align: top;"|MLE4
686
|  style="text-align: center;vertical-align: top;"|0.242
687
|  style="text-align: center;vertical-align: top;"|0.860
688
|  style="text-align: center;vertical-align: top;"|0.278
689
|  style="text-align: center;vertical-align: top;"|0.809
690
|-
691
|  style="text-align: center;vertical-align: top;"|FWDR
692
|  style="text-align: center;vertical-align: top;"|0.232
693
|  style="text-align: center;vertical-align: top;"|0.870
694
|  style="text-align: center;vertical-align: top;"|0.271
695
|  style="text-align: center;vertical-align: top;"|0.817
696
|-
697
|  style="text-align: center;vertical-align: top;"|FLEIR
698
|  style="text-align: center;vertical-align: top;"|0.236
699
|  style="text-align: center;vertical-align: top;"|0.867
700
|  style="text-align: center;vertical-align: top;"|0.269
701
|  style="text-align: center;vertical-align: top;"|0.821
702
|-
703
|  style="text-align: center;vertical-align: top;"|SWDR
704
|  style="text-align: center;vertical-align: top;"|0.232
705
|  style="text-align: center;vertical-align: top;"|0.871
706
|  style="text-align: center;vertical-align: top;"|0.269
707
|  style="text-align: center;vertical-align: top;"|0.820
708
|-
709
|  style="text-align: center;vertical-align: top;"|SLEIR
710
|  style="text-align: center;vertical-align: top;"|0.237
711
|  style="text-align: center;vertical-align: top;"|0.867
712
|  style="text-align: center;vertical-align: top;"|0.277
713
|  style="text-align: center;vertical-align: top;"|0.811
714
|}
715
716
717
[[#tab-3|Table 3]] in which the STD of the difference of height anomaly with waveform retracking is smaller than the unretracked and the correlation coefficient is higher than the result of unretracked, shows that each retracker method improves the accuracy of SSH in cases 1 and 2. There is a high correlation coefficient (~0.8) of the height anomaly between retracked SSH and QBTG records in case 1. The STD obtained by MLE4 is 0.242 m, which is smaller than 0.248 m, 0.271 m, 0.245 m, and 0.262 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.232 m, 0.236 m, 0.232 m and 0.237 m respectively, which are also smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.860, which is higher than 0.854, 0.813, 0.858 and 0.837 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.870, 0.867, 0.871 and 0.867, which are also higher than MLE4 method.
718
719
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are the same as that of Threshold 50%, which are better than the result of OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWRand SLEIR are 0.271 m, 0.269 m, 0.269 m, and 0.277 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.272 m, 0.334 m, 0.293 m, 0.303 m and 0.278 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.817, 0.821, 0.820 and 0.811, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.820, 0.729, 0.786, 0.778, and 0.809. In addition, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in cases 1 and 2.
720
721
In the near KaohTG, the height anomaly from several retrackers and KaohTG records are shown in Figures [[#img-6|6]]  and [[#img-7|7]], respectively. Similarly, we only shown the results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
722
723
<div id='img-6'></div>
724
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
725
|-
726
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image102.png|600px]]
727
|- style="text-align: center; font-size: 75%;"
728
| colspan="1" style="padding:10px;"| '''Figure 6'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 1
729
|}
730
731
732
<div id='img-7'></div>
733
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
734
|-
735
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image103.png|600px]]
736
|- style="text-align: center; font-size: 75%;"
737
| colspan="1" style="padding-bottom:10px;"| '''Figure 7'''. Height anomaly variation obtained by Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 2
738
|}
739
740
741
[[#tab-4|Table 4]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and KaohTG records in cases 1 and 2.
742
743
<div class="center" style="font-size: 75%;">
744
'''Table 4'''. Statistical results of height anomaly between the retracked SSH and KaohTG records</div>
745
746
<div id='tab-1'></div>
747
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
748
|-style="text-align:center"
749
! rowspan='2' | Retracker   !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
750
|-
751
|  style="text-align: center;"|STD (m)
752
|  style="text-align: center;"|Correlation coefficient
753
|  style="text-align: center;"|STD (m)
754
|  style="text-align: center;"|Correlation coefficient
755
|-
756
|  style="text-align: center;vertical-align: top;"|Unretracked
757
|  style="text-align: center;vertical-align: top;"|0.227
758
|  style="text-align: center;vertical-align: top;"|0.626
759
|  style="text-align: center;vertical-align: top;"|0.248
760
|  style="text-align: center;vertical-align: top;"|0.514
761
|-
762
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
763
|  style="text-align: center;vertical-align: top;"|0.153
764
|  style="text-align: center;vertical-align: top;"|0.819
765
|  style="text-align: center;vertical-align: top;"|0.195
766
|  style="text-align: center;vertical-align: top;"|0.696
767
|-
768
|  style="text-align: center;vertical-align: top;"|OCOG
769
|  style="text-align: center;vertical-align: top;"|0.234
770
|  style="text-align: center;vertical-align: top;"|0.623
771
|  style="text-align: center;vertical-align: top;"|0.268
772
|  style="text-align: center;vertical-align: top;"|0.407
773
|-
774
|  style="text-align: center;vertical-align: top;"|5-β
775
|  style="text-align: center;vertical-align: top;"|0.149
776
|  style="text-align: center;vertical-align: top;"|0.823
777
|  style="text-align: center;vertical-align: top;"|0.208
778
|  style="text-align: center;vertical-align: top;"|0.638
779
|-
780
|  style="text-align: center;vertical-align: top;"|Ice-1
781
|  style="text-align: center;vertical-align: top;"|0.188
782
|  style="text-align: center;vertical-align: top;"|0.740
783
|  style="text-align: center;vertical-align: top;"|0.239
784
|  style="text-align: center;vertical-align: top;"|0.560
785
|-
786
|  style="text-align: center;vertical-align: top;"|MLE4
787
|  style="text-align: center;vertical-align: top;"|0.141
788
|  style="text-align: center;vertical-align: top;"|0.841
789
|  style="text-align: center;vertical-align: top;"|0.220
790
|  style="text-align: center;vertical-align: top;"|0.632
791
|-
792
|  style="text-align: center;vertical-align: top;"|FWDR
793
|  style="text-align: center;vertical-align: top;"|0.145
794
|  style="text-align: center;vertical-align: top;"|0.828
795
|  style="text-align: center;vertical-align: top;"|0.198
796
|  style="text-align: center;vertical-align: top;"|0.679
797
|-
798
|  style="text-align: center;vertical-align: top;"|FLEIR
799
|  style="text-align: center;vertical-align: top;"|0.135
800
|  style="text-align: center;vertical-align: top;"|0.851
801
|  style="text-align: center;vertical-align: top;"|0.191
802
|  style="text-align: center;vertical-align: top;"|0.711
803
|-
804
|  style="text-align: center;vertical-align: top;"|SWDR
805
|  style="text-align: center;vertical-align: top;"|0.140
806
|  style="text-align: center;vertical-align: top;"|0.838
807
|  style="text-align: center;vertical-align: top;"|0.183
808
|  style="text-align: center;vertical-align: top;"|0.716
809
|-
810
|  style="text-align: center;vertical-align: top;"|SLEIR
811
|  style="text-align: center;vertical-align: top;"|0.143
812
|  style="text-align: center;vertical-align: top;"|0.833
813
|  style="text-align: center;vertical-align: top;"|0.201
814
|  style="text-align: center;vertical-align: top;"|0.685
815
|}
816
817
818
[[#tab-4|Table 4]]  shows that each retracker methods improves the accuracy of SSH in cases 1 and 2. There is a small STD and high correlation coefficient (~0.8) of the height anomaly between retracked SSH and tide gauge (KaohTG) distance from coastline 10-20 km. The STD obtained by MLE4 is 0.141 m, which is smaller than 0.153 m, 0.234 m, 0.149 m, 0.188 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.145 m, 0.135 m, 0.140 m and 0.143 m, which are smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.841, which is higher than 0.819, 0.623, 0.823 and 0.740 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.828, 0.851, 0.838 and 0.833, which are higher than MLE4 method.
819
820
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are better than the result of Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.198 m, 0.191 m, 0.183 m and 0.201 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.195 m, 0.268 m, 0.208 m, 0.239 m and 0.220 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.679, 0.711, 0.716, and 0.685, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.696, 0.407, 0.630, 0.560 and 0.632. Also, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in case 1 and 2.
821
822
Through comparison with two tide gauges, we reached the following conclusions. The performance of MLE4 method is better than Threshold 50%, OCOG, 5-β, Ice-1 methods in case 1, and the performance of Threshold 50% method is better than OCOG, 5-β, Ice-1 and MLE4 methods in case 2. But, the new methods have a better performance than Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. The STD and correlation coefficient obtained by FLEIR are better than the result of FDWR, indicating that the re-determined midpoint is more accurate through interpolating the estimated lead edge midpoint on the measured waveform.
823
824
Therefore, the accuracy of the new method is better than that of the common retrackers. The new method has been validated in the coastal area.
825
826
==5. Conclusion==
827
828
In order to deal with the disturbed satellite radar altimeter echo waveform in the open ocean and coastal area, a retracking method based on waveform derivative is proposed in this paper. The leading edge midpoint is determined by the second derivative zero point, and combining the advantages of function-fitting and empirical statistical method, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. Four new waveform retracking results are given.
829
830
By processing the waveforms from the Jason-2 SGDRs, we computed the retracked SSHs. In the open ocean, through comparison with the RMS of crossover discrepancies of SSH, the RMSs obtained by FWDR, FLEIR, SWDR, SLEIR are 0.108 m, 0.107 m, 0.114 m, and 0.119 m respectively, which are smaller than 0.124 m, 0.177 m, 0.121 m, 0.192 m, and 0.112 obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods. Further, through comparison with the geoid heights, the IMP and correlation coefficient of the differences between retracked SSHs with respect to geoid heights were computed. The IMP and correlation coefficient obtained by new retracking methods are better than the result of common retracker methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4%, and 14.7%, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 16.2%, 14.7%, -3.0%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR, and SLEIR are 0.944, 0.944, 0.943, and 0.939, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.940, 0.920, 0.939, 0.930 and 0.939.
831
832
In addtion, through comparison with tide gauge records, the STD and correlation coefficient of the height anomaly between the retracked SSH and tide gauge records were computed. The STDs obtained by the new method are 0.135-0.269 m, which are better than 0.153-0.272 m, 0.234-0.334 m, 0.149-0.293 m, 0.188-0.303 m, and 0.141-0.278 m obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. Both in the open ocean and coastal area, the performance of the new method is better than the Threshold 50%, OCOG, 5-β methods as well as the Ice-1 and MLE4 retracker from SGDRs.
833
834
Therefore, the new method has been validated from Jason-2 SGDRs, it can recover more reliable SSH and improve the SGDRs quality both in the open ocean and coastal area. For the improvement of the quanlity of satellite altimeter data, especially the processing of waveform data, it also provides a new way for studying waveform retracking.
835
836
==Acknowledgments==
837
838
We are very grateful to AVISO for providing the SGDRs, and the University of Hawaii for providing the tide gauge records. This research was funded by National Natural Science Foundation of China (Grant Nos. 41774001, 41374009, 41874091) and SDUST Research Fund (Grant No. 2014TDJH101).
839
840
==References==
841
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
842
843
[1] Fu L.L., Cazenave A. Satellite altimetry and earth sciences: A handbook of techniques and applications. California, San Diego Academic Press, 373-375, 2001.
844
845
[2] Guo J.Y., Wang J.B., Hu Z.B., Hwang C.W., Chen C.F., Gao Y.G.. Temporal-spatial variations of sea level over Chinese seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chinese Journal of Geophysics, 58(9):3103-3120, 2015.
846
847
[3] Hsiao Y.S., Hwang C., Cheng Y.S., Chen L.C., Hsu H.J., Tsai J.H., Liu C.L., Wang C.C., Kao Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sensing of Environment, 176:69-83, 2016.
848
849
[4] Stammer D., Cazenave A. Satellite altimetry over oceans and land surfaces. Florida: Taylor & Francis Boca Raton, CRC Press, 670 pp., 2017.
850
851
[5] Zhu C., Guo J., Hwang C., Gao J., Yuan J., Liu X. How HY-2A/GM altimeter performs in marine gravity derivation: assessment in the South China Sea. Geophysical Journal International, 219:1056-1064, 2019.
852
853
[6] Gómez-Enri J., González C. J., Passaro M., Vignudelli S., Álvarez O., Cipollini P., Mañanes R., Bruno M., Lopez-Carmona P., Izquierdo A. Wind-induced cross-strait sea level variability in the Strait of Gibraltar from coastal altimetry and in-situ measurements. Remote Sensing of Environment, 221:596-608, 2019.
854
855
[7] Hwang C., Guo J., Deng X., Hsu H.Y., Liu Y. Coastal gravity anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the role of airborne gravity data. Journal of Geodesy, 80(4):204-216, 2006.
856
857
[8] Guo J.Y., Gao Y.G., Hwang C.W., Sun J.L. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Science China Earth Sciences, 53(4):610-616, 2010.
858
859
[9] Huang Z., Wang H., Luo Z., Shum C., Tseng K.H., Zhong B. Improving Jason-2 sea surface heights within 10 km offshore by retracking decontaminated waveforms. Remote Sensing, 9(10):1077, 2017.
860
861
[10] Cipollini P., Calafat F.M., Jevrejeva S., Melet A., Prandi P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surveys in Geophysics, 38(1):33-57, 2017.
862
863
[11] Lyszkowicz A.B., Bernatowicz A. Current state of art of satellite altimetry. Geodesy and Cartography, 66(2):259-270, 2017.
864
865
[12] Anzenhofer M., Shum C.K., Renstch M. Coastal altimetry and applications. Dept Geod Sci and Surveying, Ohio State University, Columbus, 1999.
866
867
[13] Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 2011.
868
869
[14] Davis C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Transactions on Geoscience & Remote Sensing, 35(4):974-979, 1997.
870
871
[15] Martin T.V., Zwally H.J., Brenner A.C., Bindschadler R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical Research, 88(C3):1608-1616, 1983.
872
873
[16] Guo J., Hwang C., Chang X., Liu Y. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in Natural Science, 16(7):732-738, 2006.
874
875
[17] Guo J.Y., Gao Y.G., Chang X.T., Hwang C.W. Optimal threshold algorithm of EnviSat waveform retracking over coastal sea. Chinese Journal of Geophysics, 53(4):807-814, 2010b.
876
877
[18] Idris N.H., Deng X. The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Marine Geodesy, 35(sup1):217-237, 2012.
878
879
[19] Passaro M., Cipollini P., Vignudelli S., Quartly G.D., Snaith H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145:173-189, 2014.
880
881
[20] Tseng K.H., Shum C.K., Yi Y., Emery W.J., Kuo C.Y., Lee H., Wang H.H. The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience & Remote Sensing, 52(2):991-1001, 2013.
882
883
[21] Guo J., Chang X., Gao Y., Sun J., Hwang C. Lake level variations monitored with satellite altimetry waveform retracking. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2(2):80-86, 2009.
884
885
[22] Peng F., Deng X. A new retracking technique for Brown peaky altimetric waveforms. Marine Geodesy, 41(2):99-125, 2017.
886
887
[23] Arabsahebi R., Voosoghi B., Tourian M.J. The inflection-point retracking algorithm: improved Jason-2 sea surface heights in the Strait of Hormuz. Marine Geodesy, 41(4):331-352, 2018.
888
889
[24] Brown G. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1):67-74, 1977.
890
891
[25] Dumont J.P., Rosmorduc V., Picot N., Bronner E., Desai S., Bonekamp H. OSTM/Jason-2 products Hand-book. available online [http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf], 2011.
892
893
[26] Deng X., Featherstone W.E., Hwang C., Berry P.A.M. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4):249-271, 2002.
894
895
[27] Benveniste J., Cipollini P., Vignudelli S. Challenges and opportunities for coastal altimetry. Eos Trans. AGU, 98, 2017.
896
897
[28] Amarouche L., Thibaut P., Zanife O.Z., Dumont J.P., Vincent P., Steunou N. Improving the Jason-1 ground retracking to better account for attitude effects. Marine Geodesy, 27(1-2):171-197, 2004.
898
899
[29] Quartly G.D. Optimizing σ0 information from the Jason-2 altimeter. IEEE Geoscience & Remote Sensing Letters, 6(3):398-402, 2009.
900
901
[30] Gommenginger C., Thibaut P., Fenoglio-Marc L., Quartly G., Deng X., Gomez-Enri J., Challenor P., Gao Y. Retracking altimeter waveforms near coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 61-102, 2011.
902
903
[31] Wingham D.J., Rapley C.G., Griffiths H. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS’86 Symposium, Zurich, Switzerland, 8-11 September, 1986.
904
905
[32] Xu X.Y., Birol F., Cazenave A. Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sensing, 10(2):282, 2018.
906
907
[33] Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008(EGM2008). Journal of Geophysical Research, 117:B04406, 2012.
908
909
[34] Khaki M., Forootan E., Sharifi M.A. Satellite radar altimetry waveform retracking over the Caspian Sea. International Journal of Remote Sensing, 35(17):6329-6356, 2014.
910
911
[35] Lee H., Shum C.K., Emery W., Calmant S., Deng X., Kuo C.Y., Roesler C., Yi Y. Validation of Jason-2 altimeter data by waveform retracking over California coastal ocean. Marine Geodesy, 33(sup1):304-316, 2010.
912
913
[36] Fenoglio-Marc L., Dinardo S., Scharroo R., Roland A., Dutour Sikiric M., Lucas B., Becker M., Benveniste J., Weiss R. The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Advances in Spach Research, 55(11):2641-2656, 2015.
914
</div>
915

Return to Li et al 2020b.

Back to Top

Document information

Published on 06/10/20
Accepted on 27/09/20
Submitted on 07/02/20

Volume 36, Issue 4, 2020
DOI: 10.23967/j.rimni.2020.10.002
Licence: CC BY-NC-SA license

Document Score

0

Views 393
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?