You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
==A New Method of Satellite Radar Altimeter Waveform Retracking Based on Waveform Derivative ==
5
6
Zhen Li<sup>1</sup>, Xin Liu<sup>12</sup>, Jinyun Guo<sup>1</sup>, Jiajia Yuan<sup>1</sup>, Yupeng Niu<sup>1</sup>, Bing Ji<sup>3</sup>
7
8
1 College of Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
9
10
2 corresponding author: [mailto:xinliu1969@126.com xinliu1969@126.com]
11
12
3 Department of Navigation, Naval University of Engineering, Wuhan, 430022, Hubei, China
13
-->
14
==Abstract==
15
16
Waveform retracking for precise sea surface height (SSH) is an important method to improve the quality of satellite altimeter data. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical methods, we effort to provide a comprehensive method for processing the waveforms over the open ocean and coastal area. The new retracking method that uses the maximum slope of leading edge to determine midpoint is proposed, the midpoint is determined by zero of second derivative of theoretical model. The unknown parameters are estimated based on the function fitting. Then combined with the advantage of empirical method, the leading edge midpoint is redetermined by interpolating the estimated midpoint on the measured waveform. The new method is validated by comparison with crossover discrepancies, geoid heights and tide gauges. The RMS of crossover discrepancy obtained by new method is 0.107 m, which is smaller than 0.192 m, 0.124 m, 0.121 m, 0.114 m, 0.112 m obtained by Ice-1,Threshold 50%, 5-β, MLE3 and MLE4 retrackers. The STD and improvement percentage of the differences between SSHs obtained by new method and geoid heights are also better than the results of single kind of retracker. Comparison with tide gauge records, the STDs difference of height anomaly obtained by new method are 0.183 m and 0.269 m at different regions, which are smaller than 0.239 m, 0.220 m, 0.195 m and 0.303 m, 0.278 m, 0.272 m obtained by Ice-1, MLE4 and Threshold 50% retrackers, respectively. Therefore, the new method can recover more reliable SSH in the open ocean and coastal area.
17
18
'''Keywords''': Satellite altimeter, waveform retracking, derivative, leading edge slope, crossover discrepancy, tide gauge
19
20
==1. Introduction==
21
22
Satellite altimetry, one of the most powerful technique of remote sensing in measuring ocean surfaces, obtains the sea surface height (SSH), the significant wave height and the backscatter coefficient. A large amount of ocean data has been collected, which provides basic information for oceanography, marine geodesy, geophysics etc. [1-6]. However, in order to get more reliable SSH, it is necessary to make corrections to altimeter data. Unfortunately, although great progress has been made in geophysical and media corrections in the last decade, it is still a challenge for obtaining accurate SSH, especially for processing the radar echo waveform. The echo signal is mainly affected by sea surface condition, bright target and contaminated by land or island. The echo waveform does not conform to the theoretical model, resulting in reduction of range accuracy [7-11].
23
24
In order to improve the accuracy of SSH and the quality of altimeter data, it is necessary to retrack the interfered echo waveform in the open ocean and coastal area. Several retrackers have been developed and are divided into two kinds [12-13]: the empirical statistical method and the function-fitting method, which are based on either full-waveform or sub-waveform. The retracking method based on empirical statistics is an algorithm that relies on empirical formulas, such as Threshold [14] algorithm. This method is of high adaptability and stability, the result of retracking is determined based on the emprical formula. Function fitting algorithm, such as 5-β algorithm [15], selects function form to fit the measured waveform. The algorithm has reliable accuracy, and has clear physical meaning and interpretation. The sub-waveform is defined as the partial waveform by processing multiple leading edges. The most important of the algorithm is the judgment and selection of sub-waveform [16-18], such as ALES [19] algorithm, the sub-waveform is adapting the width of the estimation window according to the significant wave height. For a single kind of retracker, it has certain limitations, for example, the emprical method is lack of physical interpretation and the function fitting method is susceptible to the influence of waveform [20-23]. Due to the complexity of the echo waveform, the accuracy of retracking method is different in the open ocean and coastal area [13]. Therefore, the waveform retracking method need to be further studied.
25
26
According to theoretical analysis and''' '''practical application of echo waveform, the method based on function fitting is still the most rigorous retracking method [19,22]. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical retrackers, we effort to provide a comprehensive waveform retracking method. We expect it can be used to process simultaneously waveforms over the open ocean and coastal area with higher accuracy. The theoretical echo model [24] provides a theoretical basis for waveform research. Based on the analysis of echo power principle and theoretical echo waveform, this paper proposes new methods to determine the leading edge midpoint by using the maximum slope of waveform leading edge. The theoretical echo model is used to derive the first and second derivative function of waveform. The leading edge midpoint is determined by the second derivative zero point. In order to be combined with the measured waveform, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. In the open ocean, through comparison with the crossover discrepancy of SSH and the differece between the retracked SSHs and geoid heights, the accuracy of the new methods is verified. Also, through comparison with the tide gauge records, the adaptable of the new methods is verified by analysis of several retracking methods in the coastal area.
27
28
<span id='_Hlk16842273'></span>
29
==2. Data==
30
31
<span id='_Hlk16842922'></span>
32
===2.1 Satellite radar altimetry===
33
34
In this study, we used the Jason-2 Sensor Geophysical Data Records (SGDRs) within the area of the South China Sea (0 °- 30 ° N, 105 °-125 ° E), which are released by AVISO (Archiving Validation and Interpretation of Satellite Oceanographic data, [http://www.aviso.altimetry.fr/ http://www.aviso.altimetry.fr/]). The SGDRs include waveforms and the state of the art geophysical and environment corrections for altimeter measurements [25]. These altimeter data of passes 012, 051, 088, 114, 153, 190 and 229 were processed from cycles 001 to 200 over the South China Sea (SCS). The passes 051, 229 and 153 are the ascending passes among those passes, and the others are the descending passes. These pass ground tracks are shown in [[#img-1|Figure 1]]. Based on the range correction of waveform retracking and the geophysical corrections extracted from SGDRs, the altimetry-derived SSHs are computed.
35
36
<div id='img-1'></div>
37
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 45%;"
38
|-
39
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image1.png|294px]]
40
|- style="text-align: center; font-size: 75%;"
41
| colspan="1" style="padding:10px;"| '''Figure 1'''. Ground tracks of Jason-2 satellite over the SCS and the two tide gauges (red point represent the tide gauge)
42
|}
43
44
===2.2 In situ tide gauge records===
45
46
<span id='_Hlk16841203'></span><span id='OLE_LINK4'></span><span id='_Hlk16532120'></span>To assess the performance of the new waveform retracking corrected SSH in the coastal area, we compared two tide gauge records in this region. The Quarry Bay tide gauge (QBTG) is located at ~114.22°E, ~22.28°N, near the northern coast of the Hong Kong Island. The tide gauge is located near pass 153 ground track of Jason-2. The Kaohsiung tide gauge (KaohTG) is located at ~120.29°E, ~22.62°N in Taiwan Island. The tide gauge is located near pass 051 ground track of Jason-2. The two tide gauges are shown in [[#img-1|Figure 1]]. The hourly tide gauge records, referred to the WGS84 reference ellipsoid, were available from the Sea Level Center of the University of Hawaii ([https://uhslc.soest.hawaii.edu https://uhslc.soest.hawaii.edu]). We obtained the hourly data from July 2008 to December 2013 for QBTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 200, and the hourly data from July 2008 to July 2013 for KaohTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 186. The altimetry-derived SSHs were determined close to the tide gauge stations. Altimetry-derived SSHs using several waveform retracking methods were compared to the stable tide gauge records.
47
48
==3. Methodology==
49
50
===3.1 Retracking principle of waveform derivative===
51
52
The SSH within the altimeter footprint is approximately symmetric with respect to a certain mean sea level in most cases. The leading edge of echo waveform is an odd function relative to leading edge midpoint [26-27]. The slope of waveform leading edge reaches the maximum value at the midpoint, and the maximum value of the leading edge slope can be derived when the second derivative is equal to zero. The model of echo waveform [19,28] can be expressed as,
53
54
{| class="formulaSCP" style="width: 100%; text-align: center;" 
55
|-
56
| 
57
{| style="text-align: center; margin:auto;" 
58
|-
59
| <span id='_Hlk16928815'></span><span id='_Hlk16843079'></span><div id="_Hlk16867916" style="text-align: right; direction: ltr; margin-left: 1em;">
60
 [[Image:Draft_Liu_514209790-image2.png|204px]]
61
|}
62
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
63
|}
64
65
66
where
67
68
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
69
 [[Image:Draft_Liu_514209790-image3.png|156px]] </div>
70
71
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
72
 [[Image:Draft_Liu_514209790-image4.png|168px]] </div>
73
74
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
75
 [[Image:Draft_Liu_514209790-image5.png|84px]] </div>
76
77
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
78
 [[Image:Draft_Liu_514209790-image6.png|252px]] </div>
79
80
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
81
 [[Image:Draft_Liu_514209790-image7.png|264px]] </div>
82
83
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
84
 [[Image:Draft_Liu_514209790-image8.png|156px]] </div>
85
86
in which  [[Image:Draft_Liu_514209790-image9.png|12px]] is the height of satellite,  [[Image:Draft_Liu_514209790-image10.png|12px]] is the radius of the Earth,  [[Image:Draft_Liu_514209790-image11.png|12px]] is the speed of light in vacuum,  [[Image:Draft_Liu_514209790-image12.png|18px]] is the amplitude of waveform,  [[Image:Draft_Liu_514209790-image13.png|18px]] is the antenna beam width of satellite altimeter,  [[Image:Draft_Liu_514209790-image14.png|12px]] is the off-nadir mispointing angle,  [[Image:Draft_Liu_514209790-image15.png|18px]] is the time migration with respect to the nominal tracking gate,  [[Image:Draft_Liu_514209790-image16.png|24px]] is the rise time of the leading edge linked to the significant wave height,  [[Image:Draft_Liu_514209790-image17.png|12px]] represents the parameter related to the beam width, and  [[Image:Draft_Liu_514209790-image18.png|42px]] is the error function.
87
88
From Equation (1), the functions of first and second waveform derivative are given as
89
90
{| class="formulaSCP" style="width: 100%; text-align: center;" 
91
|-
92
| 
93
{| style="text-align: center; margin:auto;" 
94
|-
95
| [[Image:Draft_Liu_514209790-image19.png|438px]]
96
|}
97
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
98
|}
99
100
{| class="formulaSCP" style="width: 100%; text-align: center;" 
101
|-
102
| 
103
{| style="text-align: center; margin:auto;" 
104
|-
105
| [[Image:Draft_Liu_514209790-image20.png|600px]]
106
|}
107
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)              
108
|}
109
110
111
When  [[Image:Draft_Liu_514209790-image21.png|72px]] , the leading edge midpoint ( [[Image:Draft_Liu_514209790-image22.png|12px]] ) where the leading edge slope is maximum can be computed, that is
112
113
{| class="formulaSCP" style="width: 100%; text-align: center;" 
114
|-
115
| 
116
{| style="text-align: center; margin:auto;" 
117
|-
118
| [[Image:Draft_Liu_514209790-image23.png|114px]]
119
|}
120
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
121
|}
122
123
124
For Equation (4), the unknown parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image25.png|18px]] ) need to be solved.
125
126
===3.2 Midpoint Determination based on the measured waveform===
127
128
<span id='_Hlk16665853'></span><span id='_Hlk16611245'></span>Generally there are three parameters ( [[Image:Draft_Liu_514209790-image26.png|18px]] , [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) that need to be estimated in that there is a strong correlation between the waveform amplitude parameter and the off-nadir mispointing angle parameter [29], and the the off-nadir mispointing angle is usually less than 0.3° [18,19]. These parameters are obtained with the least squares estimator by using the Equation (1) to fit the measured waveform. The error equation is:
129
130
{| class="formulaSCP" style="width: 100%; text-align: center;" 
131
|-
132
| 
133
{| style="text-align: center; margin:auto;" 
134
|-
135
| [[Image:Draft_Liu_514209790-image28.png|102px]]
136
|}
137
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
138
|}
139
140
141
where  [[Image:Draft_Liu_514209790-image29.png|12px]] is a vector that indicates the difference between the measured waveform and the estimated waveform by Equation (1),  [[Image:Draft_Liu_514209790-image30.png|18px]] ( [[Image:Draft_Liu_514209790-image31.png|24px]] ,  [[Image:Draft_Liu_514209790-image32.png|18px]] , [[Image:Draft_Liu_514209790-image33.png|30px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image34.png|18px]] is the partial derivative matrix as
142
143
{| class="formulaSCP" style="width: 100%; text-align: center;" 
144
|-
145
| 
146
{| style="text-align: center; margin:auto;" 
147
|-
148
| [[Image:Draft_Liu_514209790-image35.png|222px]]
149
|}
150
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)                                  
151
|}
152
153
154
in which the three partial derivatives of the unknown parameter are as following:
155
156
{| class="formulaSCP" style="width: 100%; text-align: center;" 
157
|-
158
| 
159
{| style="text-align: center; margin:auto;" 
160
|-
161
| [[Image:Draft_Liu_514209790-image36.png|516px]]
162
|}
163
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
164
|}
165
166
{| class="formulaSCP" style="width: 100%; text-align: center;" 
167
|-
168
| 
169
{| style="text-align: center; margin:auto;" 
170
|-
171
| [[Image:Draft_Liu_514209790-image37.png|516px]]
172
|}
173
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
174
|}
175
176
{| class="formulaSCP" style="width: 100%; text-align: center;" 
177
|-
178
| 
179
{| style="text-align: center; margin:auto;" 
180
|-
181
| [[Image:Draft_Liu_514209790-image38.png|336px]]
182
|}
183
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)         
184
|}
185
186
187
Due to the waveform samples are decorrelation between the range gates [27,30], these unknown parameters are estimated with the least squares estimator as:
188
189
{| class="formulaSCP" style="width: 100%; text-align: center;" 
190
|-
191
| 
192
{| style="text-align: center; margin:auto;" 
193
|-
194
| [[Image:Draft_Liu_514209790-image39.png|144px]]
195
|}
196
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
197
|}
198
199
200
<span id='_Hlk16865042'></span>The initial value will affect parameters estimation. The initial value of unknown parameters are determined by using Off-Center of Gravity (OCOG) algorithm [31]. The unknown parameters are estimated until iterative convergence. The convergence criterion is based on the merit function  [[Image:Draft_Liu_514209790-image40.png|18px]] defined by:
201
202
{| class="formulaSCP" style="width: 100%; text-align: center;" 
203
|-
204
| 
205
{| style="text-align: center; margin:auto;" 
206
|-
207
| [[Image:Draft_Liu_514209790-image41.png|108px]]
208
|}
209
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)                        
210
|}
211
212
213
where  [[Image:Draft_Liu_514209790-image42.png|18px]] is the difference between the estimated waveform and the measured waveform.
214
215
<span id='_Hlk16928418'></span><span id='_Hlk16690821'></span><span id='_Hlk16928355'></span>The leading edge midpoint is computed via Equation (4). This leading edge midpoint obtained by this way is called the first wave derivative retracker (FWDR) in this paper. However, the midpoint is only determined by the parameter  [[Image:Draft_Liu_514209790-image24.png|12px]] [27], is called as MLE3 and MLE4 retracker. Our main improvement is that the leading edge midpoint is determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) instead of one ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
216
217
<span id='_Hlk16867686'></span><span id='_Hlk16867895'></span><span id='_Hlk16930319'></span><span id='_Hlk16868145'></span>The leading edge midpoint determined based on the function-fitting method is possbile not on the measured waveform. In order to more accurately determine the leading edge midpoint on the measured waveform, combining the advantages of the empirical statistical retracker (similar to Threshold 50% method), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. This leading edge midpoint obtained by this way is called the first leading edge interpolation retracker (FLEIR), that is:
218
219
{| class="formulaSCP" style="width: 100%; text-align: center;" 
220
|-
221
| 
222
{| style="text-align: center; margin:auto;" 
223
|-
224
| <span id='_Hlk16930144'></span>                   [[Image:Draft_Liu_514209790-image43.png|192px]]
225
|}
226
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
227
|}
228
229
230
<span id='_Hlk16622485'></span><span id='OLE_LINK2'></span>where  <math display="inline">t_m</math> is the re-determined leading edge midpoint,  [[Image:Draft_Liu_514209790-image45.png|12px]] is the midpoint power from the estimated waveform by Equation (1),  [[Image:Draft_Liu_514209790-image46.png|18px]] the first gate (sampling) position beyond the theoretical midpoint power, and  [[Image:Draft_Liu_514209790-image47.png|18px]] and  [[Image:Draft_Liu_514209790-image48.png|24px]] are the measured waveform power values respectively.
231
232
<span id='_Hlk16926934'></span>
233
234
===3.3 Midpoint determination the based on the first-order difference quotient of waveform===
235
236
<span id='_Hlk16929773'></span><span id='_Hlk16687014'></span>The leading edge midpoint is determined based on the first-order difference quotient of waveform. The waveform is actually a discrete set of echo power on the sampling interval of the altimeter. The power of each gate is composed of the echo signal of reflective surface and noise. The noise of adjacent sampling gate is similar, and can be reduced by the first-order difference quotient. Thus, the unknown parameters can be estimated by using the Equation (2) to fit the first-order difference quotient. Then, the leading edge midpoint can be computed with Equation (4).
237
238
<span id='_Hlk16927062'></span><span id='_Hlk16930611'></span>The first-order difference quotient of waveform,   [[Image:Draft_Liu_514209790-image49.png|54px]] , can be computed as,
239
240
{| class="formulaSCP" style="width: 100%; text-align: center;" 
241
|-
242
| 
243
{| style="text-align: center; margin:auto;" 
244
|-
245
| [[Image:Draft_Liu_514209790-image50.png|186px]]
246
|}
247
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
248
|}
249
250
251
<span id='_Hlk16927182'></span>where  [[Image:Draft_Liu_514209790-image51.png|48px]] and  [[Image:Draft_Liu_514209790-image52.png|36px]] are the echo powers corresponding to gate  [[Image:Draft_Liu_514209790-image53.png|42px]] and  [[Image:Draft_Liu_514209790-image54.png|12px]] respectively, while  [[Image:Draft_Liu_514209790-image55.png|18px]] is the sampling interval. Equation (13) indicates that the  [[Image:Draft_Liu_514209790-image49.png|54px]] is correlated between different gates based on the covariance propagation law.
252
253
Similarly, these unknown parameters are estimated with the least squares method. The error equation is:
254
255
{| class="formulaSCP" style="width: 100%; text-align: center;" 
256
|-
257
| 
258
{| style="text-align: center; margin:auto;" 
259
|-
260
| [[Image:Draft_Liu_514209790-image56.png|114px]]
261
|}
262
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
263
|}
264
265
266
where  [[Image:Draft_Liu_514209790-image57.png|18px]] is a vector that indicates the difference between the estimated by Equation (2) and the first order difference quotient of waveform,  [[Image:Draft_Liu_514209790-image58.png|12px]] ( [[Image:Draft_Liu_514209790-image59.png|24px]] ,  [[Image:Draft_Liu_514209790-image60.png|18px]] ,  [[Image:Draft_Liu_514209790-image61.png|24px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image62.png|18px]] is the partial derivative matrix as
267
268
{| class="formulaSCP" style="width: 100%; text-align: center;" 
269
|-
270
| 
271
{| style="text-align: center; margin:auto;" 
272
|-
273
| [[Image:Draft_Liu_514209790-image63.png|240px]]
274
|}
275
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
276
|}
277
278
279
The three partial derivatives of the unknown parameters based on the function of first derivatives are formulated as,
280
281
{| class="formulaSCP" style="width: 100%; text-align: center;" 
282
|-
283
| 
284
{| style="text-align: center; margin:auto;" 
285
|-
286
| [[Image:Draft_Liu_514209790-image64.png|600px]]
287
|}
288
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)            
289
|}
290
291
{| class="formulaSCP" style="width: 100%; text-align: center;" 
292
|-
293
| 
294
{| style="text-align: center; margin:auto;" 
295
|-
296
| [[Image:Draft_Liu_514209790-image65.png|600px]]
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)   
299
|}
300
301
{| class="formulaSCP" style="width: 100%; text-align: center;" 
302
|-
303
| 
304
{| style="text-align: center; margin:auto;" 
305
|-
306
| [[Image:Draft_Liu_514209790-image66.png|444px]]
307
|}
308
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
309
|}
310
311
312
<span id='_Hlk16927232'></span>Due to the difference quotient  [[Image:Draft_Liu_514209790-image67.png|66px]] is computed by equation (13), it is correlated between different gates based on the covariance propagation law. The unknown parameters are estimated with the least squares estimator as:
313
314
{| class="formulaSCP" style="width: 100%; text-align: center;" 
315
|-
316
| 
317
{| style="text-align: center; margin:auto;" 
318
|-
319
| [[Image:Draft_Liu_514209790-image68.png|192px]]
320
|}
321
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
322
|}
323
324
325
where  [[Image:Draft_Liu_514209790-image69.png|12px]] is the weight matrix as
326
327
{| class="formulaSCP" style="width: 100%; text-align: center;" 
328
|-
329
| 
330
{| style="text-align: center; margin:auto;" 
331
|-
332
| [[Image:Draft_Liu_514209790-image70.png|246px]]
333
|}
334
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
335
|}
336
337
338
The initial values of the unknown parameters are also determined by the OCOG algorithm. The unknown parameters are estimated until iterative convergence (the convergence criterion is similar to Equation 11). The waveform leading edge midpoint is computed via Equation (4). The midpoint obtained by this way is called the second wave derivative retracker (SWDR) in this paper.
339
340
<span id='_Hlk16930537'></span>Similar to Equation (12), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. The midpoint obtained by this way is called the second leading edge interpolation retracker (SLEIR).
341
342
A flow chart of the new waveform retracking is shown in [[#img-2|Figure 2]].
343
344
<div id='img-2'></div>
345
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
346
|-
347
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image71.png|384px]]
348
|- style="text-align: center; font-size: 75%;"
349
| colspan="1" style="padding-bottom:10px;"| '''Figure 2'''. Flow chart of waveform retracking based on waveform derivative
350
|}
351
352
353
=4. Experiment Results and Analysis=
354
355
<span id='_Hlk16781048'></span><span id='_Hlk16779792'></span>
356
===4.1 Comparison with crossover discrepancies of SSHs===
357
358
<span id='_Hlk16779736'></span><span id='_Hlk16839022'></span><span id='_Hlk16781462'></span>The crossover is the intersection of two tracks between ascending pass and descending pass. The crossover discrepancy of SSHs is an evaluation criterion of waveform retracking method in the open ocean. To obtain the statistical results, we define SSH as given by
359
360
{| class="formulaSCP" style="width: 100%; text-align: center;" 
361
|-
362
| 
363
{| style="text-align: center; margin:auto;" 
364
|-
365
| [[Image:Draft_Liu_514209790-image72.png|600px]]
366
|}
367
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
368
|}
369
370
<span id='_Hlk16780874'></span>where  [[Image:Draft_Liu_514209790-image73.png|24px]] is the altitude of Jason-2 satellite,  [[Image:Draft_Liu_514209790-image74.png|54px]] is the range between satellite and reflective surface (partial instrumental corrections included, i.e. distance antenna-COG, USO drift correction, internal path correction),  [[Image:Draft_Liu_514209790-image75.png|54px]] is the Doppler correction,  [[Image:Draft_Liu_514209790-image76.png|54px]] is the modeled instrumental correction,  [[Image:Draft_Liu_514209790-image77.png|84px]] is the system bias of instrument,  [[Image:Draft_Liu_514209790-image78.png|42px]] is the dry tropospheric correction which is calculated from the atmospheric pressure and tide published by the European Centre for Medium-range Weather Forecasts (ECMWF),  [[Image:Draft_Liu_514209790-image79.png|48px]] is the wet tropospheric correction, which is calculated from the data measured by the microwave radiometer carried by the satellite,  [[Image:Draft_Liu_514209790-image80.png|48px]] is the ionospheric delay corrected using Dual-frequency,  [[Image:Draft_Liu_514209790-image81.png|54px]] is the sea state bias correction, which is calculated by empirical fitting of significant wave height and wind speed,  [[Image:Draft_Liu_514209790-image82.png|42px]] (inverted barometer correction) and  [[Image:Draft_Liu_514209790-image83.png|42px]] (high frequency atmospheric pressure loading correction) are the dynamic atmospheric corrections,  [[Image:Draft_Liu_514209790-image84.png|42px]] is the geocentric ocean tide height correction, obtained by GOT4.10 model,  [[Image:Draft_Liu_514209790-image85.png|42px]] is the solid earth tide height correction, and  [[Image:Draft_Liu_514209790-image86.png|36px]] is the pole tide height correction. These above corrections are available in the SGDRs.
371
372
<span id='_Hlk16781311'></span>The range correction  [[Image:Draft_Liu_514209790-image87.png|48px]] of waveform retracking is given by
373
374
{| class="formulaSCP" style="width: 100%; text-align: center;" 
375
|-
376
| 
377
{| style="text-align: center; margin:auto;" 
378
|-
379
| [[Image:Draft_Liu_514209790-image88.png|222px]]
380
|}
381
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
382
|}
383
384
385
where  [[Image:Draft_Liu_514209790-image89.png|12px]] is the leading edge midpoint,  [[Image:Draft_Liu_514209790-image90.png|12px]] the nominal tracking gate ( [[Image:Draft_Liu_514209790-image91.png|12px]] =32 gate of Jason-2 altimeter wavefrom),  [[Image:Draft_Liu_514209790-image92.png|30px]] the sampling interval of a gate (1 gate=3.125 ns of Jason-2 altimeter).
386
387
<span id='_Hlk16839791'></span><span id='_Hlk16779852'></span>The waveform data of cycles 001 to 200 are processed. For assessing the performance of the new retracker, we compared the retracked SSH from Threshold 50%, OCOG and 5-β retrackers, as well as the Ice-1 and MLE4 ( or Ocean) retrackers from SGDRs. Also, we obtained the ALES [19] retracked SSH data ([http://openadb.dgfi.tum.de/ http://openadb.dgfi.tum.de/]), which is widely recognized as a high-precision SSH products [22,32]. The retracked SSHs and the crossover discrepancies of SSHs in each cycle were computed. Some data of cycles are missing (Such as cycles 174, 175, 190, 191), and the gross error (>1 m) of the crossover discrepancies of SSHs are removed. There are 1502 crossover discrepancies in total. The statistics of crossover discrepancies of SSHs obtained by several retrackers are listed in [[#tab-1|Table 1]]. The Unretracked represents the raw SSHs without waveform retracking.
388
389
By analyzing the RMS of the crossover discrepancies of SSHs, it is found that the results of several retracking methods are smaller than unretracked results, indicating that the waveform retracking can reduce the RMS of crossover discrepancies of SSH and improve the quality of satellite altimeter data. The RMSs obtained by FWDR, FLEIR, SWDR and SLEIR are 0.108 m, 0.107 m, 0.114 m and 0.119 m, which are smaller than 0.124 m, 0.177 m and 0.121 m obtained by Threshold 50%, OCOG and 5-β methods, respectively, indicating that the new methods can get more accurate results than the common methods in this region. The RMSs obtained by new mthods, which are less than 0.192 m, and 0.112 m obtained by Ice-1 and MLE4 methods from SGDR data, indicating that it can provide more accurate results than SGDRs (retracked SSH by MLE4, Ice-1 retracker) in the open ocean. In addition, the RMSs obtained by FWDR and FLEIR are 0.108 m and 0.107 m, which are smaller than 0.114 m obtained by MLE3 retracker, indicating that the midpoint determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) is more accurate than one parameter ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
390
391
<div class="center" style="font-size: 75%;">'''Table 1'''. Statistics of crossover discrepancies of SSHs obtained by several retracking methods (Unit: m)</div>
392
393
<div id='tab-1'></div>
394
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
395
|-style="text-align:center"
396
! Retracker !! MAX !! MIN !! MEAN !! STD !! RMS
397
|-
398
|  style="text-align: center;vertical-align: top;"|Unretracked
399
|  style="text-align: center;vertical-align: top;"|0.996
400
|  style="text-align: center;vertical-align: top;"|-0.805
401
|  style="text-align: center;vertical-align: top;"|0.001
402
|  style="text-align: center;vertical-align: top;"|0.225
403
|  style="text-align: center;vertical-align: top;"|0.225
404
|-
405
|  style="text-align: center;vertical-align: top;"|Threshold(50%)
406
|  style="text-align: center;vertical-align: top;"|0.936
407
|  style="text-align: center;vertical-align: top;"|-0.714
408
|  style="text-align: center;vertical-align: top;"|-0.004
409
|  style="text-align: center;vertical-align: top;"|0.124
410
|  style="text-align: center;vertical-align: top;"|0.124
411
|-
412
|  style="text-align: center;vertical-align: top;"|OCOG
413
|  style="text-align: center;vertical-align: top;"|0.940
414
|  style="text-align: center;vertical-align: top;"|-0.981
415
|  style="text-align: center;vertical-align: top;"|-0.005
416
|  style="text-align: center;vertical-align: top;"|0.177
417
|  style="text-align: center;vertical-align: top;"|0.177
418
|-
419
|  style="text-align: center;vertical-align: top;"|5-β
420
|  style="text-align: center;vertical-align: top;"|0.692
421
|  style="text-align: center;vertical-align: top;"|-0.692
422
|  style="text-align: center;vertical-align: top;"|-0.007
423
|  style="text-align: center;vertical-align: top;"|0.120
424
|  style="text-align: center;vertical-align: top;"|0.121
425
|-
426
|  style="text-align: center;vertical-align: top;"|Ice-1
427
|  style="text-align: center;vertical-align: top;"|0.783
428
|  style="text-align: center;vertical-align: top;"|-0.774
429
|  style="text-align: center;vertical-align: top;"|-0.031
430
|  style="text-align: center;vertical-align: top;"|0.190
431
|  style="text-align: center;vertical-align: top;"|0.192
432
|-
433
|  style="text-align: center;vertical-align: top;"|MLE3
434
|  style="text-align: center;vertical-align: top;"|0.716
435
|  style="text-align: center;vertical-align: top;"|-0.506
436
|  style="text-align: center;vertical-align: top;"|-0.005
437
|  style="text-align: center;vertical-align: top;"|0.114
438
|  style="text-align: center;vertical-align: top;"|0.114
439
|-
440
|  style="text-align: center;vertical-align: top;"|MLE4
441
|  style="text-align: center;vertical-align: top;"|0.773
442
|  style="text-align: center;vertical-align: top;"|-0.652
443
|  style="text-align: center;vertical-align: top;"|-0.004
444
|  style="text-align: center;vertical-align: top;"|0.112
445
|  style="text-align: center;vertical-align: top;"|0.112
446
|-
447
|  style="text-align: center;vertical-align: top;"|ALES
448
|  style="text-align: center;vertical-align: top;"|0.741
449
|  style="text-align: center;vertical-align: top;"|-0.724
450
|  style="text-align: center;vertical-align: top;"|-0.002
451
|  style="text-align: center;vertical-align: top;"|0.105
452
|  style="text-align: center;vertical-align: top;"|0.105
453
|-
454
|  style="text-align: center;vertical-align: top;"|FWDR
455
|  style="text-align: center;vertical-align: top;"|0.693
456
|  style="text-align: center;vertical-align: top;"|-0.524
457
|  style="text-align: center;vertical-align: top;"|-0.003
458
|  style="text-align: center;vertical-align: top;"|0.108
459
|  style="text-align: center;vertical-align: top;"|0.108
460
|-
461
|  style="text-align: center;vertical-align: top;"|FLEIR
462
|  style="text-align: center;vertical-align: top;"|0.696
463
|  style="text-align: center;vertical-align: top;"|-0.623
464
|  style="text-align: center;vertical-align: top;"|-0.003
465
|  style="text-align: center;vertical-align: top;"|0.107
466
|  style="text-align: center;vertical-align: top;"|0.107
467
|-
468
|  style="text-align: center;vertical-align: top;"|SWDR
469
|  style="text-align: center;vertical-align: top;"|0.740
470
|  style="text-align: center;vertical-align: top;"|-0.714
471
|  style="text-align: center;vertical-align: top;"|0.000
472
|  style="text-align: center;vertical-align: top;"|0.114
473
|  style="text-align: center;vertical-align: top;"|0.114
474
|-
475
|  style="text-align: center;vertical-align: top;"|SLEIR
476
|  style="text-align: center;vertical-align: top;"|0.772
477
|  style="text-align: center;vertical-align: top;"|-0.749
478
|  style="text-align: center;vertical-align: top;"|-0.005
479
|  style="text-align: center;vertical-align: top;"|0.119
480
|  style="text-align: center;vertical-align: top;"|0.119
481
|}
482
483
484
Furthermore, we comparison with the retracked SSH by ALES retraker. The RMS obtained by FLEIR is 0.107 m, which is slightly smaller than 0.105 m obtained by ALES products. The difference may be caused by different correction models, such as sea state bias correction and ocean tide correction. This also shown that the retracked SSH by new methods is reliable compared with the SSH obtained by ALES products.
485
486
<span id='_Hlk16924105'></span><span id='_Hlk16781133'></span>
487
===4.2 Comparison with geoid heights ===
488
489
In order to contrast and analyze the retracked SSHs, the regional geoid heights are derived from the Earth Gravity Field Model EGM2008 [33] up to degree 2160 (Http://icgem.gfz-postdam.de/ICGEM). The performance of retracked SSHs can be assessed in comparison with geoid heights [7,34].
490
491
If the retracked SSHs did not resemble the geoid heights, then the retracked SSHs was considered to be not valid, even if it had been able to correct the errors of SSH [6,9,35]. The correlation coefficient and improvement of percentage (IMP) of the difference between retracked SSHs and geoid heights are used to analyze the quality of retracked SSHs. It is widely accepted that the higher the IMP value is, the better the retracked result is. The IMP can be computed as
492
493
{| class="formulaSCP" style="width: 100%; text-align: center;" 
494
|-
495
| 
496
{| style="text-align: center; margin:auto;" 
497
|-
498
| [[Image:Draft_Liu_514209790-image93.png|222px]]
499
|}
500
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
501
|}
502
503
504
where  [[Image:Draft_Liu_514209790-image94.png|36px]] is the improvement percentage,  [[Image:Draft_Liu_514209790-image95.png|30px]] is the STD of the difference between geoid heights and SSHs without waveform retracking correction.  [[Image:Draft_Liu_514209790-image96.png|48px]] is the STD of the difference between geoid heights and altimetry-derived SSHs with waveform retracking correction.
505
506
[[#img-3|Figure 3]]  shows retracked SSHs and geoid heights of by several methods. For the image to be clearly distinguishable, we only show results from the Ice-1, MLE4, Threshold 50% and FLEIR methods.
507
508
<div id='img-3'></div>
509
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
510
|-
511
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image97.png|600px]]
512
|- style="text-align: center; font-size: 75%;"
513
| colspan="1" style="padding-bottom:10px;"| '''Figure 3'''. Comparison of the Ice-1, MLE4, Threshold 50%, FLEIR retracked SSHs and geoid heights
514
|}
515
516
517
[[#tab-2|Table 2]] gives the statistical results of the IMP and correlation coefficient of the differences between retracked SSHs (cycle010pass229) and geoid heights. The cycle is selected randomly, and using other cycles will not alter our findings.
518
519
<div class="center" style="font-size: 75%;">'''Table 2'''.  Statistics of the differences between retracked SSHs and geoid heights (Unit: m)</div>
520
521
<div id='tab-2'></div>
522
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
523
|-style="text-align:center"
524
! Retracker !! MAX !! MIN !! MEAN !! STD !! IMP/(%) !! Correlation coefficient 
525
|-
526
|  style="text-align: center;"|Unretracked
527
|  style="text-align: center;"|2.118
528
|  style="text-align: center;"|0.388
529
|  style="text-align: center;"|1.149
530
|  style="text-align: center;"|0.265
531
|  style="text-align: center;"|
532
|  style="text-align: center;"|0.921
533
|-
534
|  style="text-align: center;"|Threshold(50%)
535
|  style="text-align: center;"|2.799
536
|  style="text-align: center;"|0.913
537
|  style="text-align: center;"|1.551
538
|  style="text-align: center;"|0.222
539
|  style="text-align: center;"|16.2%
540
|  style="text-align: center;"|0.940
541
|-
542
|  style="text-align: center;"|OCOG 
543
|  style="text-align: center;"|3.096
544
|  style="text-align: center;"|0.517
545
|  style="text-align: center;"|2.075
546
|  style="text-align: center;"|0.273
547
|  style="text-align: center;"|-3.0%
548
|  style="text-align: center;"|0.920
549
|-
550
|  style="text-align: center;"|Βeta-5
551
|  style="text-align: center;"|3.104
552
|  style="text-align: center;"|0.906
553
|  style="text-align: center;"|1.461
554
|  style="text-align: center;"|0.226
555
|  style="text-align: center;"|14.7%
556
|  style="text-align: center;"|0.939
557
|-
558
|  style="text-align: center;"|Ice-1
559
|  style="text-align: center;"|3.144
560
|  style="text-align: center;"|1.328
561
|  style="text-align: center;"|1.777
562
|  style="text-align: center;"|0.239
563
|  style="text-align: center;"|9.8%
564
|  style="text-align: center;"|0.930
565
|-
566
|  style="text-align: center;"|MLE4
567
|  style="text-align: center;"|2.775
568
|  style="text-align: center;"|0.959
569
|  style="text-align: center;"|1.463
570
|  style="text-align: center;"|0.225
571
|  style="text-align: center;"|15.1%
572
|  style="text-align: center;"|0.939
573
|-
574
|  style="text-align: center;vertical-align: top;"|FWDR
575
|  style="text-align: center;"|2.700
576
|  style="text-align: center;"|0.928
577
|  style="text-align: center;"|1.456
578
|  style="text-align: center;"|0.217
579
|  style="text-align: center;"|18.1%
580
|  style="text-align: center;"|0.944
581
|-
582
|  style="text-align: center;vertical-align: top;"|FLEIR
583
|  style="text-align: center;"|2.601
584
|  style="text-align: center;"|0.946
585
|  style="text-align: center;"|1.456
586
|  style="text-align: center;"|0.216
587
|  style="text-align: center;"|18.5%
588
|  style="text-align: center;"|0.944
589
|-
590
|  style="text-align: center;vertical-align: top;"|SWDR
591
|  style="text-align: center;"|2.533
592
|  style="text-align: center;"|0.921
593
|  style="text-align: center;"|1.480
594
|  style="text-align: center;"|0.219
595
|  style="text-align: center;"|17.4%
596
|  style="text-align: center;"|0.943
597
|-
598
|  style="text-align: center;vertical-align: top;"|SLEIR
599
|  style="text-align: center;"|2.739
600
|  style="text-align: center;"|0.909
601
|  style="text-align: center;"|1.458
602
|  style="text-align: center;"|0.226
603
|  style="text-align: center;"|14.7%
604
|  style="text-align: center;"|0.939
605
|}
606
607
608
[[#tab-2|Table 2]] provides a summary of results, where the STD (0.265 m) of the difference is large, which indicates that the unretracked SSH has poor smoothness and fluctuation. After waveform retracking, the STD is reduced, and the smoothness of SSH is improved, which eliminated large abrupt changes and maintained good smoothness of SSH. The IMP and correlation coefficient obtained by new methods are better than the results of the common methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4% and 14.7%, respectively, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1, and MLE4 methods are 16.2%, -3.0%, 14.7%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR and SLEIR are 0.944, 0.944, 0.943 and 0.939 respectively, while the value obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 are 0.940, 0.920, 0.939, 0.930 and 0.939.
609
610
Therefore, it is concluded that the new proposed retracking methods in this paper are reliable, and exhibit better performance than the common retrackers.
611
612
<span id='_Hlk16924416'></span>
613
===4.3 Comparsion with tide gauge records===
614
615
In addition, we compared the retracked SSH using several retracking methods with the tide gauge records in the coastal area. As the tide gauge records are not corrected for tidal and dynamic atmospheric effects, we also do not apply these corrections to the altimeter data by employing [23,36]
616
617
{| class="formulaSCP" style="width: 100%; text-align: center;" 
618
|-
619
| 
620
{| style="text-align: center; margin:auto;" 
621
|-
622
| [[Image:Draft_Liu_514209790-image98.png|600px]]
623
|}
624
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
625
|}
626
627
628
<span id='_Hlk16782260'></span>where  [[Image:Draft_Liu_514209790-image99.png|36px]] is the solid earth tide correction; the other corrections is the same as Equation (21), and all corrections are available in the SGDRs.
629
630
<span id='_Hlk16779974'></span>The hourly tide gauge records were interpolated to the time of the altimeter measurement. To avoid possible discrepancy datum of both altimetry-derived SSHs and tide gauge records, the temporal mean is removed from each time series, referring to as height anomaly [15]. For assessed the performance of the retracked SSH in the coastal area, we have categorized the altimetry-derived SSH to two spatial intervasl: namely 10-20 km and 0-10 km away from coastline, correspond to cases 1 and 2, respectively. Finally, the correlation coefficient and STD of the difference between height anomaly from several retrackers and tide gauge records were computed.
631
632
In the near QBTG, the height anomaly from several retrackers and tide gauge records in cases 1 and 2 are shown in Figures [[#img-4|4]]  and [[#img-5|5]], respectively. For the image to be clearly distinguishable, we only shown results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
633
634
<div id='img-4'></div>
635
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
636
|-
637
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image100.png|600px]]
638
|- style="text-align: center; font-size: 75%;"
639
| colspan="1" style="padding:10px;"| '''Figure 4'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50% and FLEIR retrackers and QBTG records in case 1 
640
|}
641
642
<div id='img-4'></div>
643
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
644
|-
645
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image101.png|600px]]
646
|- style="text-align: center; font-size: 75%;"
647
| colspan="1" style="padding-bottom:10px;"| '''Figure 5'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and QBTG records in case 2
648
|}
649
650
651
[[#tab-3|Table 3]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and QBTG records in cases 1 and 2.
652
653
<div class="center" style="font-size: 75%;">'''Table 3'''. Statistical results of height anomaly between the retracked SSH and QBTG records</div>
654
655
<div id='tab-3'></div>
656
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
657
|-style="text-align:center"
658
! rowspan='2' | Retracker !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
659
|-
660
|  style="text-align: center;"|STD (m)
661
|  style="text-align: center;"|Correlation coefficient
662
|  style="text-align: center;"|STD (m)
663
|  style="text-align: center;"|Correlation coefficient
664
|-
665
|  style="text-align: center;vertical-align: top;"|Unretracked
666
|  style="text-align: center;vertical-align: top;"|0.302
667
|  style="text-align: center;vertical-align: top;"|0.789
668
|  style="text-align: center;vertical-align: top;"|0.370
669
|  style="text-align: center;vertical-align: top;"|0.666
670
|-
671
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
672
|  style="text-align: center;vertical-align: top;"|0.248
673
|  style="text-align: center;vertical-align: top;"|0.854
674
|  style="text-align: center;vertical-align: top;"|0.272
675
|  style="text-align: center;vertical-align: top;"|0.820
676
|-
677
|  style="text-align: center;vertical-align: top;"|OCOG
678
|  style="text-align: center;vertical-align: top;"|0.271
679
|  style="text-align: center;vertical-align: top;"|0.813
680
|  style="text-align: center;vertical-align: top;"|0.334
681
|  style="text-align: center;vertical-align: top;"|0.729
682
|-
683
|  style="text-align: center;vertical-align: top;"|5-β
684
|  style="text-align: center;vertical-align: top;"|0.237
685
|  style="text-align: center;vertical-align: top;"|0.858
686
|  style="text-align: center;vertical-align: top;"|0.293
687
|  style="text-align: center;vertical-align: top;"|0.786
688
|-
689
|  style="text-align: center;vertical-align: top;"|Ice-1
690
|  style="text-align: center;vertical-align: top;"|0.262
691
|  style="text-align: center;vertical-align: top;"|0.837
692
|  style="text-align: center;vertical-align: top;"|0.303
693
|  style="text-align: center;vertical-align: top;"|0.778
694
|-
695
|  style="text-align: center;vertical-align: top;"|MLE4
696
|  style="text-align: center;vertical-align: top;"|0.242
697
|  style="text-align: center;vertical-align: top;"|0.860
698
|  style="text-align: center;vertical-align: top;"|0.278
699
|  style="text-align: center;vertical-align: top;"|0.809
700
|-
701
|  style="text-align: center;vertical-align: top;"|FWDR
702
|  style="text-align: center;vertical-align: top;"|0.232
703
|  style="text-align: center;vertical-align: top;"|0.870
704
|  style="text-align: center;vertical-align: top;"|0.271
705
|  style="text-align: center;vertical-align: top;"|0.817
706
|-
707
|  style="text-align: center;vertical-align: top;"|FLEIR
708
|  style="text-align: center;vertical-align: top;"|0.236
709
|  style="text-align: center;vertical-align: top;"|0.867
710
|  style="text-align: center;vertical-align: top;"|0.269
711
|  style="text-align: center;vertical-align: top;"|0.821
712
|-
713
|  style="text-align: center;vertical-align: top;"|SWDR
714
|  style="text-align: center;vertical-align: top;"|0.232
715
|  style="text-align: center;vertical-align: top;"|0.871
716
|  style="text-align: center;vertical-align: top;"|0.269
717
|  style="text-align: center;vertical-align: top;"|0.820
718
|-
719
|  style="text-align: center;vertical-align: top;"|SLEIR
720
|  style="text-align: center;vertical-align: top;"|0.237
721
|  style="text-align: center;vertical-align: top;"|0.867
722
|  style="text-align: center;vertical-align: top;"|0.277
723
|  style="text-align: center;vertical-align: top;"|0.811
724
|}
725
726
727
[[#tab-3|Table 3]] in which the STD of the difference of height anomaly with waveform retracking is smaller than the unretracked and the correlation coefficient is higher than the result of unretracked, shows that each retracker method improves the accuracy of SSH in cases 1 and 2. There is a high correlation coefficient (~0.8) of the height anomaly between retracked SSH and QBTG records in case 1. The STD obtained by MLE4 is 0.242 m, which is smaller than 0.248 m, 0.271 m, 0.245 m, and 0.262 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.232 m, 0.236 m, 0.232 m and 0.237 m respectively, which are also smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.860, which is higher than 0.854, 0.813, 0.858 and 0.837 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.870, 0.867, 0.871 and 0.867, which are also higher than MLE4 method.
728
729
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are the same as that of Threshold 50%, which are better than the result of OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWRand SLEIR are 0.271 m, 0.269 m, 0.269 m, and 0.277 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.272 m, 0.334 m, 0.293 m, 0.303 m and 0.278 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.817, 0.821, 0.820 and 0.811, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.820, 0.729, 0.786, 0.778, and 0.809. In addition, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in cases 1 and 2.
730
731
In the near KaohTG, the height anomaly from several retrackers and KaohTG records are shown in Figures [[#img-6|6]]  and [[#img-7|7]], respectively. Similarly, we only shown the results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
732
733
<div id='img-6'></div>
734
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
735
|-
736
|style="padding:10px;"|  [[Image:Draft_Liu_514209790-image102.png|600px]]
737
|- style="text-align: center; font-size: 75%;"
738
| colspan="1" style="padding:10px;"| '''Figure 6'''. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 1
739
|}
740
741
742
<div id='img-7'></div>
743
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
744
|-
745
|style="padding:10px;"| [[Image:Draft_Liu_514209790-image103.png|600px]]
746
|- style="text-align: center; font-size: 75%;"
747
| colspan="1" style="padding-bottom:10px;"| '''Figure 7'''. Height anomaly variation obtained by Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 2
748
|}
749
750
751
[[#tab-4|Table 4]] gives the STD and correlation coefficient of the height anomaly between the retracked SSH and KaohTG records in cases 1 and 2.
752
753
<div class="center" style="font-size: 75%;">
754
'''Table 4'''. Statistical results of height anomaly between the retracked SSH and KaohTG records</div>
755
756
<div id='tab-1'></div>
757
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
758
|-style="text-align:center"
759
! rowspan='2' | Retracker   !! colspan='2'  |Case 1 !! colspan='2'  |Case 2
760
|-
761
|  style="text-align: center;"|STD (m)
762
|  style="text-align: center;"|Correlation coefficient
763
|  style="text-align: center;"|STD (m)
764
|  style="text-align: center;"|Correlation coefficient
765
|-
766
|  style="text-align: center;vertical-align: top;"|Unretracked
767
|  style="text-align: center;vertical-align: top;"|0.227
768
|  style="text-align: center;vertical-align: top;"|0.626
769
|  style="text-align: center;vertical-align: top;"|0.248
770
|  style="text-align: center;vertical-align: top;"|0.514
771
|-
772
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
773
|  style="text-align: center;vertical-align: top;"|0.153
774
|  style="text-align: center;vertical-align: top;"|0.819
775
|  style="text-align: center;vertical-align: top;"|0.195
776
|  style="text-align: center;vertical-align: top;"|0.696
777
|-
778
|  style="text-align: center;vertical-align: top;"|OCOG
779
|  style="text-align: center;vertical-align: top;"|0.234
780
|  style="text-align: center;vertical-align: top;"|0.623
781
|  style="text-align: center;vertical-align: top;"|0.268
782
|  style="text-align: center;vertical-align: top;"|0.407
783
|-
784
|  style="text-align: center;vertical-align: top;"|5-β
785
|  style="text-align: center;vertical-align: top;"|0.149
786
|  style="text-align: center;vertical-align: top;"|0.823
787
|  style="text-align: center;vertical-align: top;"|0.208
788
|  style="text-align: center;vertical-align: top;"|0.638
789
|-
790
|  style="text-align: center;vertical-align: top;"|Ice-1
791
|  style="text-align: center;vertical-align: top;"|0.188
792
|  style="text-align: center;vertical-align: top;"|0.740
793
|  style="text-align: center;vertical-align: top;"|0.239
794
|  style="text-align: center;vertical-align: top;"|0.560
795
|-
796
|  style="text-align: center;vertical-align: top;"|MLE4
797
|  style="text-align: center;vertical-align: top;"|0.141
798
|  style="text-align: center;vertical-align: top;"|0.841
799
|  style="text-align: center;vertical-align: top;"|0.220
800
|  style="text-align: center;vertical-align: top;"|0.632
801
|-
802
|  style="text-align: center;vertical-align: top;"|FWDR
803
|  style="text-align: center;vertical-align: top;"|0.145
804
|  style="text-align: center;vertical-align: top;"|0.828
805
|  style="text-align: center;vertical-align: top;"|0.198
806
|  style="text-align: center;vertical-align: top;"|0.679
807
|-
808
|  style="text-align: center;vertical-align: top;"|FLEIR
809
|  style="text-align: center;vertical-align: top;"|0.135
810
|  style="text-align: center;vertical-align: top;"|0.851
811
|  style="text-align: center;vertical-align: top;"|0.191
812
|  style="text-align: center;vertical-align: top;"|0.711
813
|-
814
|  style="text-align: center;vertical-align: top;"|SWDR
815
|  style="text-align: center;vertical-align: top;"|0.140
816
|  style="text-align: center;vertical-align: top;"|0.838
817
|  style="text-align: center;vertical-align: top;"|0.183
818
|  style="text-align: center;vertical-align: top;"|0.716
819
|-
820
|  style="text-align: center;vertical-align: top;"|SLEIR
821
|  style="text-align: center;vertical-align: top;"|0.143
822
|  style="text-align: center;vertical-align: top;"|0.833
823
|  style="text-align: center;vertical-align: top;"|0.201
824
|  style="text-align: center;vertical-align: top;"|0.685
825
|}
826
827
828
[[#tab-4|Table 4]]  shows that each retracker methods improves the accuracy of SSH in cases 1 and 2. There is a small STD and high correlation coefficient (~0.8) of the height anomaly between retracked SSH and tide gauge (KaohTG) distance from coastline 10-20 km. The STD obtained by MLE4 is 0.141 m, which is smaller than 0.153 m, 0.234 m, 0.149 m, 0.188 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.145 m, 0.135 m, 0.140 m and 0.143 m, which are smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.841, which is higher than 0.819, 0.623, 0.823 and 0.740 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.828, 0.851, 0.838 and 0.833, which are higher than MLE4 method.
829
830
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are better than the result of Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.198 m, 0.191 m, 0.183 m and 0.201 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.195 m, 0.268 m, 0.208 m, 0.239 m and 0.220 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.679, 0.711, 0.716, and 0.685, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.696, 0.407, 0.630, 0.560 and 0.632. Also, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in case 1 and 2.
831
832
Through comparison with two tide gauges, we reached the following conclusions. The performance of MLE4 method is better than Threshold 50%, OCOG, 5-β, Ice-1 methods in case 1, and the performance of Threshold 50% method is better than OCOG, 5-β, Ice-1 and MLE4 methods in case 2. But, the new methods have a better performance than Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. The STD and correlation coefficient obtained by FLEIR are better than the result of FDWR, indicating that the re-determined midpoint is more accurate through interpolating the estimated lead edge midpoint on the measured waveform.
833
834
Therefore, the accuracy of the new method is better than that of the common retrackers. The new method has been validated in the coastal area.
835
836
==5. Conclusion==
837
838
In order to deal with the disturbed satellite radar altimeter echo waveform in the open ocean and coastal area, a retracking method based on waveform derivative is proposed in this paper. The leading edge midpoint is determined by the second derivative zero point, and combining the advantages of function-fitting and empirical statistical method, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. Four new waveform retracking results are given.
839
840
By processing the waveforms from the Jason-2 SGDRs, we computed the retracked SSHs. In the open ocean, through comparison with the RMS of crossover discrepancies of SSH, the RMSs obtained by FWDR, FLEIR, SWDR, SLEIR are 0.108 m, 0.107 m, 0.114 m, and 0.119 m respectively, which are smaller than 0.124 m, 0.177 m, 0.121 m, 0.192 m, and 0.112 obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods. Further, through comparison with the geoid heights, the IMP and correlation coefficient of the differences between retracked SSHs with respect to geoid heights were computed. The IMP and correlation coefficient obtained by new retracking methods are better than the result of common retracker methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4%, and 14.7%, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 16.2%, 14.7%, -3.0%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR, and SLEIR are 0.944, 0.944, 0.943, and 0.939, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.940, 0.920, 0.939, 0.930 and 0.939.
841
842
In addtion, through comparison with tide gauge records, the STD and correlation coefficient of the height anomaly between the retracked SSH and tide gauge records were computed. The STDs obtained by the new method are 0.135-0.269 m, which are better than 0.153-0.272 m, 0.234-0.334 m, 0.149-0.293 m, 0.188-0.303 m, and 0.141-0.278 m obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. Both in the open ocean and coastal area, the performance of the new method is better than the Threshold 50%, OCOG, 5-β methods as well as the Ice-1 and MLE4 retracker from SGDRs.
843
844
Therefore, the new method has been validated from Jason-2 SGDRs, it can recover more reliable SSH and improve the SGDRs quality both in the open ocean and coastal area. For the improvement of the quanlity of satellite altimeter data, especially the processing of waveform data, it also provides a new way for studying waveform retracking.
845
846
==Acknowledgments==
847
848
We are very grateful to AVISO for providing the SGDRs, and the University of Hawaii for providing the tide gauge records. This research was funded by National Natural Science Foundation of China (Grant Nos. 41774001, 41374009, 41874091) and SDUST Research Fund (Grant No. 2014TDJH101).
849
850
==References==
851
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
852
853
[1] Fu L.L., Cazenave A. Satellite altimetry and earth sciences: A handbook of techniques and applications. California, San Diego Academic Press, 373-375, 2001.
854
855
[2] Guo J.Y., Wang J.B., Hu Z.B., Hwang C.W., Chen C.F., Gao Y.G.. Temporal-spatial variations of sea level over Chinese seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chinese Journal of Geophysics, 58(9):3103-3120, 2015.
856
857
[3] Hsiao Y.S., Hwang C., Cheng Y.S., Chen L.C., Hsu H.J., Tsai J.H., Liu C.L., Wang C.C., Kao Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sensing of Environment, 176:69-83, 2016.
858
859
[4] Stammer D., Cazenave A. Satellite altimetry over oceans and land surfaces. Florida: Taylor & Francis Boca Raton, CRC Press, 670 pp., 2017.
860
861
[5] Zhu C., Guo J., Hwang C., Gao J., Yuan J., Liu X. How HY-2A/GM altimeter performs in marine gravity derivation: assessment in the South China Sea. Geophysical Journal International, 219:1056-1064, 2019.
862
863
[6] Gómez-Enri J., González C. J., Passaro M., Vignudelli S., Álvarez O., Cipollini P., Mañanes R., Bruno M., Lopez-Carmona P., Izquierdo A. Wind-induced cross-strait sea level variability in the Strait of Gibraltar from coastal altimetry and in-situ measurements. Remote Sensing of Environment, 221:596-608, 2019.
864
865
[7] Hwang C., Guo J., Deng X., Hsu H.Y., Liu Y. Coastal gravity anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the role of airborne gravity data. Journal of Geodesy, 80(4):204-216, 2006.
866
867
[8] Guo J.Y., Gao Y.G., Hwang C.W., Sun J.L. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Science China Earth Sciences, 53(4):610-616, 2010.
868
869
[9] Huang Z., Wang H., Luo Z., Shum C., Tseng K.H., Zhong B. Improving Jason-2 sea surface heights within 10 km offshore by retracking decontaminated waveforms. Remote Sensing, 9(10):1077, 2017.
870
871
[10] Cipollini P., Calafat F.M., Jevrejeva S., Melet A., Prandi P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surveys in Geophysics, 38(1):33-57, 2017.
872
873
[11] Lyszkowicz A.B., Bernatowicz A. Current state of art of satellite altimetry. Geodesy and Cartography, 66(2):259-270, 2017.
874
875
[12] Anzenhofer M., Shum C.K., Renstch M. Coastal altimetry and applications. Dept Geod Sci and Surveying, Ohio State University, Columbus, 1999.
876
877
[13] Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 2011.
878
879
[14] Davis C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Transactions on Geoscience & Remote Sensing, 35(4):974-979, 1997.
880
881
[15] Martin T.V., Zwally H.J., Brenner A.C., Bindschadler R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical Research, 88(C3):1608-1616, 1983.
882
883
[16] Guo J., Hwang C., Chang X., Liu Y. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in Natural Science, 16(7):732-738, 2006.
884
885
[17] Guo J.Y., Gao Y.G., Chang X.T., Hwang C.W. Optimal threshold algorithm of EnviSat waveform retracking over coastal sea. Chinese Journal of Geophysics, 53(4):807-814, 2010b.
886
887
[18] Idris N.H., Deng X. The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Marine Geodesy, 35(sup1):217-237, 2012.
888
889
[19] Passaro M., Cipollini P., Vignudelli S., Quartly G.D., Snaith H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145:173-189, 2014.
890
891
[20] Tseng K.H., Shum C.K., Yi Y., Emery W.J., Kuo C.Y., Lee H., Wang H.H. The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience & Remote Sensing, 52(2):991-1001, 2013.
892
893
[21] Guo J., Chang X., Gao Y., Sun J., Hwang C. Lake level variations monitored with satellite altimetry waveform retracking. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2(2):80-86, 2009.
894
895
[22] Peng F., Deng X. A new retracking technique for Brown peaky altimetric waveforms. Marine Geodesy, 41(2):99-125, 2017.
896
897
[23] Arabsahebi R., Voosoghi B., Tourian M.J. The inflection-point retracking algorithm: improved Jason-2 sea surface heights in the Strait of Hormuz. Marine Geodesy, 41(4):331-352, 2018.
898
899
[24] Brown G. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1):67-74, 1977.
900
901
[25] Dumont J.P., Rosmorduc V., Picot N., Bronner E., Desai S., Bonekamp H. OSTM/Jason-2 products Hand-book. available online [http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf], 2011.
902
903
[26] Deng X., Featherstone W.E., Hwang C., Berry P.A.M. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4):249-271, 2002.
904
905
[27] Benveniste J., Cipollini P., Vignudelli S. Challenges and opportunities for coastal altimetry. Eos Trans. AGU, 98, 2017.
906
907
[28] Amarouche L., Thibaut P., Zanife O.Z., Dumont J.P., Vincent P., Steunou N. Improving the Jason-1 ground retracking to better account for attitude effects. Marine Geodesy, 27(1-2):171-197, 2004.
908
909
[29] Quartly G.D. Optimizing σ0 information from the Jason-2 altimeter. IEEE Geoscience & Remote Sensing Letters, 6(3):398-402, 2009.
910
911
[30] Gommenginger C., Thibaut P., Fenoglio-Marc L., Quartly G., Deng X., Gomez-Enri J., Challenor P., Gao Y. Retracking altimeter waveforms near coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 61-102, 2011.
912
913
[31] Wingham D.J., Rapley C.G., Griffiths H. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS’86 Symposium, Zurich, Switzerland, 8-11 September, 1986.
914
915
[32] Xu X.Y., Birol F., Cazenave A. Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sensing, 10(2):282, 2018.
916
917
[33] Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008(EGM2008). Journal of Geophysical Research, 117:B04406, 2012.
918
919
[34] Khaki M., Forootan E., Sharifi M.A. Satellite radar altimetry waveform retracking over the Caspian Sea. International Journal of Remote Sensing, 35(17):6329-6356, 2014.
920
921
[35] Lee H., Shum C.K., Emery W., Calmant S., Deng X., Kuo C.Y., Roesler C., Yi Y. Validation of Jason-2 altimeter data by waveform retracking over California coastal ocean. Marine Geodesy, 33(sup1):304-316, 2010.
922
923
[36] Fenoglio-Marc L., Dinardo S., Scharroo R., Roland A., Dutour Sikiric M., Lucas B., Becker M., Benveniste J., Weiss R. The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Advances in Spach Research, 55(11):2641-2656, 2015.
924
</div>
925

Return to Li et al 2020b.

Back to Top

Document information

Published on 06/10/20
Accepted on 27/09/20
Submitted on 07/02/20

Volume 36, Issue 4, 2020
DOI: 10.23967/j.rimni.2020.10.002
Licence: CC BY-NC-SA license

Document Score

0

Views 393
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?