You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
==A New Method of Satellite Radar Altimeter Waveform Retracking Based on Waveform Derivative ==
5
6
Zhen Li<sup>1</sup>, Xin Liu<sup>12</sup>, Jinyun Guo<sup>1</sup>, Jiajia Yuan<sup>1</sup>, Yupeng Niu<sup>1</sup>, Bing Ji<sup>3</sup>
7
8
1 College of Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
9
10
2 corresponding author: [mailto:xinliu1969@126.com xinliu1969@126.com]
11
12
3 Department of Navigation, Naval University of Engineering, Wuhan, 430022, Hubei, China
13
-->
14
15
==Abstract==
16
17
Waveform retracking for precise sea surface height (SSH) is an important method to improve the quality of satellite altimeter data. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical methods, we effort to provide a comprehensive method for processing the waveforms over the open ocean and coastal area. The new retracking method that uses the maximum slope of leading edge to determine midpoint is proposed, the midpoint is determined by zero of second derivative of theoretical model. The unknown parameters are estimated based on the function fitting. Then combined with the advantage of empirical method, the leading edge midpoint is redetermined by interpolating the estimated midpoint on the measured waveform. The new method is validated by comparison with crossover discrepancies, geoid heights and tide gauges. The RMS of crossover discrepancy obtained by new method is 0.107 m, which is smaller than 0.192 m, 0.124 m, 0.121 m, 0.114 m, 0.112 m obtained by Ice-1,Threshold 50%, 5-β, MLE3 and MLE4 retrackers. The STD and improvement percentage of the differences between SSHs obtained by new method and geoid heights are also better than the results of single kind of retracker. Comparison with tide gauge records, the STDs difference of height anomaly obtained by new method are 0.183 m and 0.269 m at different regions, which are smaller than 0.239 m, 0.220 m, 0.195 m and 0.303 m, 0.278 m, 0.272 m obtained by Ice-1, MLE4 and Threshold 50% retrackers, respectively. Therefore, the new method can recover more reliable SSH in the open ocean and coastal area.
18
19
'''Keywords:''' Satellite altimeter; Waveform retracking; Derivative; Leading edge slope; Crossover discrepancy; Tide gauge
20
21
=1. Introduction=
22
23
Satellite altimetry, one of the most powerful technique of remote sensing in measuring ocean surfaces, obtains the sea surface height (SSH), the significant wave height and the backscatter coefficient. A large amount of ocean data has been collected, which provides basic information for oceanography, marine geodesy, geophysics etc. [1-6]. However, in order to get more reliable SSH, it is necessary to make corrections to altimeter data. Unfortunately, although great progress has been made in geophysical and media corrections in the last decade, it is still a challenge for obtaining accurate SSH, especially for processing the radar echo waveform. The echo signal is mainly affected by sea surface condition, bright target and contaminated by land or island. The echo waveform does not conform to the theoretical model, resulting in reduction of range accuracy [7-11].
24
25
<span id='_Hlk16867418'></span>In order to improve the accuracy of SSH and the quality of altimeter data, it is necessary to retrack the interfered echo waveform in the open ocean and coastal area. Several retrackers have been developed and are divided into two kinds [12-13]: the empirical statistical method and the function-fitting method, which are based on either full-waveform or sub-waveform. The retracking method based on empirical statistics is an algorithm that relies on empirical formulas, such as Threshold [14] algorithm. This method is of high adaptability and stability, the result of retracking is determined based on the emprical formula. Function fitting algorithm, such as 5-β algorithm [15], selects function form to fit the measured waveform. The algorithm has reliable accuracy, and has clear physical meaning and interpretation. The sub-waveform is defined as the partial waveform by processing multiple leading edges. The most important of the algorithm is the judgment and selection of sub-waveform [16-18], such as ALES [19] algorithm, the sub-waveform is adapting the width of the estimation window according to the significant wave height. For a single kind of retracker, it has certain limitations, for example, the emprical method is lack of physical interpretation and the function fitting method is susceptible to the influence of waveform [20-23]. Due to the complexity of the echo waveform, the accuracy of retracking method is different in the open ocean and coastal area [13]. Therefore, the waveform retracking method need to be further studied.
26
27
<span id='_Hlk16779280'></span><span id='_Hlk16926018'></span>According to theoretical analysis and''' '''practical application of echo waveform, the method based on function fitting is still the most rigorous retracking method [19], [22]. Combining the physical explanation of the function fitting and the high adaptability of empirical statistical retrackers, we effort to provide a comprehensive waveform retracking method. We expect it can be used to process simultaneously waveforms over the open ocean and coastal area with higher accuracy. The theoretical echo model [24] provides a theoretical basis for waveform research. Based on the analysis of echo power principle and theoretical echo waveform, this paper proposes new methods to determine the leading edge midpoint by using the maximum slope of waveform leading edge. The theoretical echo model is used to derive the first and second derivative function of waveform. The leading edge midpoint is determined by the second derivative zero point. In order to be combined with the measured waveform, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. In the open ocean, through comparison with the crossover discrepancy of SSH and the differece between the retracked SSHs and geoid heights, the accuracy of the new methods is verified. Also, through comparison with the tide gauge records, the adaptable of the new methods is verified by analysis of several retracking methods in the coastal area.
28
29
<span id='_Hlk16842273'></span>
30
=2. Data=
31
32
<span id='_Hlk16842922'></span>
33
==2.1 Satellite radar altimetry==
34
35
In this study, we used the Jason-2 Sensor Geophysical Data Records (SGDRs) within the area of the South China Sea (0 °- 30 ° N, 105 °-125 ° E), which are released by AVISO (Archiving Validation and Interpretation of Satellite Oceanographic data, [http://www.aviso.altimetry.fr/ http://www.aviso.altimetry.fr/]). The SGDRs include waveforms and the state of the art geophysical and environment corrections for altimeter measurements [25]. These altimeter data of passes 012, 051, 088, 114, 153, 190 and 229 were processed from cycles 001 to 200 over the South China Sea (SCS). The passes 051, 229 and 153 are the ascending passes among those passes, and the others are the descending passes. These pass ground tracks are shown in Fig. 1. Based on the range correction of waveform retracking and the geophysical corrections extracted from SGDRs, the altimetry-derived SSHs are computed.
36
37
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
38
 [[Image:Draft_Liu_514209790-image1.png|294px]] </div>
39
40
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
41
Fig1. Ground tracks of Jason-2 satellite over the SCS and the two tide gauges (red point represent the tide gauge).</div>
42
43
==2.2 In situ tide gauge records==
44
45
<span id='_Hlk16841203'></span><span id='OLE_LINK4'></span><span id='_Hlk16532120'></span>To assess the performance of the new waveform retracking corrected SSH in the coastal area, we compared two tide gauge records in this region. The Quarry Bay tide gauge (QBTG) is located at ~114.22°E, ~22.28°N, near the northern coast of the Hong Kong Island. The tide gauge is located near pass 153 ground track of Jason-2. The Kaohsiung tide gauge (KaohTG) is located at ~120.29°E, ~22.62°N in Taiwan Island. The tide gauge is located near pass 051 ground track of Jason-2. The two tide gauges are shown in Fig 1. The hourly tide gauge records, referred to the WGS84 reference ellipsoid, were available from the Sea Level Center of the University of Hawaii ([https://uhslc.soest.hawaii.edu https://uhslc.soest.hawaii.edu]). We obtained the hourly data from July 2008 to December 2013 for QBTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 200, and the hourly data from July 2008 to July 2013 for KaohTG records, corresponds to satellite altimeter ground tracks from cycles 001 to 186. The altimetry-derived SSHs were determined close to the tide gauge stations. Altimetry-derived SSHs using several waveform retracking methods were compared to the stable tide gauge records.
46
47
=3. Methodology=
48
49
==3.1 Retracking principle of waveform derivative==
50
51
The SSH within the altimeter footprint is approximately symmetric with respect to a certain mean sea level in most cases. The leading edge of echo waveform is an odd function relative to leading edge midpoint [26-27]. The slope of waveform leading edge reaches the maximum value at the midpoint, and the maximum value of the leading edge slope can be derived when the second derivative is equal to zero. The model of echo waveform [19, 28] can be expressed as,
52
53
{| class="formulaSCP" style="width: 100%; text-align: center;" 
54
|-
55
| 
56
{| style="text-align: center; margin:auto;" 
57
|-
58
| <span id='_Hlk16928815'></span><span id='_Hlk16843079'></span><div id="_Hlk16867916" style="text-align: right; direction: ltr; margin-left: 1em;">
59
 [[Image:Draft_Liu_514209790-image2.png|204px]]
60
|}
61
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
62
|}
63
64
65
where
66
67
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
68
 [[Image:Draft_Liu_514209790-image3.png|156px]] </div>
69
70
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
71
 [[Image:Draft_Liu_514209790-image4.png|168px]] </div>
72
73
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
74
 [[Image:Draft_Liu_514209790-image5.png|84px]] </div>
75
76
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
77
 [[Image:Draft_Liu_514209790-image6.png|252px]] </div>
78
79
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
80
 [[Image:Draft_Liu_514209790-image7.png|264px]] </div>
81
82
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
83
 [[Image:Draft_Liu_514209790-image8.png|156px]] </div>
84
85
in which  [[Image:Draft_Liu_514209790-image9.png|12px]] is the height of satellite,  [[Image:Draft_Liu_514209790-image10.png|12px]] is the radius of the Earth,  [[Image:Draft_Liu_514209790-image11.png|12px]] is the speed of light in vacuum,  [[Image:Draft_Liu_514209790-image12.png|18px]] is the amplitude of waveform,  [[Image:Draft_Liu_514209790-image13.png|18px]] is the antenna beam width of satellite altimeter,  [[Image:Draft_Liu_514209790-image14.png|12px]] is the off-nadir mispointing angle,  [[Image:Draft_Liu_514209790-image15.png|18px]] is the time migration with respect to the nominal tracking gate,  [[Image:Draft_Liu_514209790-image16.png|24px]] is the rise time of the leading edge linked to the significant wave height,  [[Image:Draft_Liu_514209790-image17.png|12px]] represents the parameter related to the beam width, and  [[Image:Draft_Liu_514209790-image18.png|42px]] is the error function.
86
87
From Equation (1), the functions of first and second waveform derivative are given as
88
89
{| class="formulaSCP" style="width: 100%; text-align: center;" 
90
|-
91
| 
92
{| style="text-align: center; margin:auto;" 
93
|-
94
| [[Image:Draft_Liu_514209790-image19.png|438px]]
95
|}
96
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
97
|}
98
99
{| class="formulaSCP" style="width: 100%; text-align: center;" 
100
|-
101
| 
102
{| style="text-align: center; margin:auto;" 
103
|-
104
| [[Image:Draft_Liu_514209790-image20.png|600px]]
105
|}
106
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)              
107
|}
108
109
110
When  [[Image:Draft_Liu_514209790-image21.png|72px]] , the leading edge midpoint ( [[Image:Draft_Liu_514209790-image22.png|12px]] ) where the leading edge slope is maximum can be computed, that is
111
112
{| class="formulaSCP" style="width: 100%; text-align: center;" 
113
|-
114
| 
115
{| style="text-align: center; margin:auto;" 
116
|-
117
| [[Image:Draft_Liu_514209790-image23.png|114px]]
118
|}
119
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
120
|}
121
122
123
For Equation (4), the unknown parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image25.png|18px]] ) need to be solved.
124
125
==3.2 Midpoint Determination based on the measured waveform==
126
127
<span id='_Hlk16665853'></span><span id='_Hlk16611245'></span>Generally there are three parameters ( [[Image:Draft_Liu_514209790-image26.png|18px]] , [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) that need to be estimated in that there is a strong correlation between the waveform amplitude parameter and the off-nadir mispointing angle parameter [29], and the the off-nadir mispointing angle is usually less than 0.3° [18], [19]. These parameters are obtained with the least squares estimator by using the Equation (1) to fit the measured waveform. The error equation is:
128
129
{| class="formulaSCP" style="width: 100%; text-align: center;" 
130
|-
131
| 
132
{| style="text-align: center; margin:auto;" 
133
|-
134
| [[Image:Draft_Liu_514209790-image28.png|102px]]
135
|}
136
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
137
|}
138
139
140
where  [[Image:Draft_Liu_514209790-image29.png|12px]] is a vector that indicates the difference between the measured waveform and the estimated waveform by Equation (1),  [[Image:Draft_Liu_514209790-image30.png|18px]] ( [[Image:Draft_Liu_514209790-image31.png|24px]] ,  [[Image:Draft_Liu_514209790-image32.png|18px]] , [[Image:Draft_Liu_514209790-image33.png|30px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image34.png|18px]] is the partial derivative matrix as
141
142
{| class="formulaSCP" style="width: 100%; text-align: center;" 
143
|-
144
| 
145
{| style="text-align: center; margin:auto;" 
146
|-
147
| [[Image:Draft_Liu_514209790-image35.png|222px]]
148
|}
149
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)                                  
150
|}
151
152
153
in which the three partial derivatives of the unknown parameter are as following:
154
155
{| class="formulaSCP" style="width: 100%; text-align: center;" 
156
|-
157
| 
158
{| style="text-align: center; margin:auto;" 
159
|-
160
| [[Image:Draft_Liu_514209790-image36.png|516px]]
161
|}
162
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
163
|}
164
165
{| class="formulaSCP" style="width: 100%; text-align: center;" 
166
|-
167
| 
168
{| style="text-align: center; margin:auto;" 
169
|-
170
| [[Image:Draft_Liu_514209790-image37.png|516px]]
171
|}
172
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
173
|}
174
175
{| class="formulaSCP" style="width: 100%; text-align: center;" 
176
|-
177
| 
178
{| style="text-align: center; margin:auto;" 
179
|-
180
| [[Image:Draft_Liu_514209790-image38.png|336px]]
181
|}
182
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)         
183
|}
184
185
186
<span id='_Hlk16926769'></span>Due to the waveform samples are decorrelation between the range gates [27], [30], these unknown parameters are estimated with the least squares estimator as:
187
188
{| class="formulaSCP" style="width: 100%; text-align: center;" 
189
|-
190
| 
191
{| style="text-align: center; margin:auto;" 
192
|-
193
| [[Image:Draft_Liu_514209790-image39.png|144px]]
194
|}
195
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
196
|}
197
198
199
<span id='_Hlk16865042'></span>The initial value will affect parameters estimation. The initial value of unknown parameters are determined by using Off-Center of Gravity (OCOG) algorithm [31]. The unknown parameters are estimated until iterative convergence. The convergence criterion is based on the merit function  [[Image:Draft_Liu_514209790-image40.png|18px]] defined by:
200
201
{| class="formulaSCP" style="width: 100%; text-align: center;" 
202
|-
203
| 
204
{| style="text-align: center; margin:auto;" 
205
|-
206
| [[Image:Draft_Liu_514209790-image41.png|108px]]
207
|}
208
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)                        
209
|}
210
211
212
where  [[Image:Draft_Liu_514209790-image42.png|18px]] is the difference between the estimated waveform and the measured waveform.
213
214
<span id='_Hlk16928418'></span><span id='_Hlk16690821'></span><span id='_Hlk16928355'></span>The leading edge midpoint is computed via Equation (4). This leading edge midpoint obtained by this way is called the first wave derivative retracker (FWDR) in this paper. However, the midpoint is only determined by the parameter  [[Image:Draft_Liu_514209790-image24.png|12px]] [27], is called as MLE3 and MLE4 retracker. Our main improvement is that the leading edge midpoint is determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) instead of one ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
215
216
<span id='_Hlk16867686'></span><span id='_Hlk16867895'></span><span id='_Hlk16930319'></span><span id='_Hlk16868145'></span>The leading edge midpoint determined based on the function-fitting method is possbile not on the measured waveform. In order to more accurately determine the leading edge midpoint on the measured waveform, combining the advantages of the empirical statistical retracker (similar to Threshold 50% method), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. This leading edge midpoint obtained by this way is called the first leading edge interpolation retracker (FLEIR), that is:
217
218
{| class="formulaSCP" style="width: 100%; text-align: center;" 
219
|-
220
| 
221
{| style="text-align: center; margin:auto;" 
222
|-
223
| <span id='_Hlk16930144'></span>                   [[Image:Draft_Liu_514209790-image43.png|192px]]
224
|}
225
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
226
|}
227
228
229
<span id='_Hlk16622485'></span><span id='OLE_LINK2'></span>where  <math display="inline">t_m</math> is the re-determined leading edge midpoint,  [[Image:Draft_Liu_514209790-image45.png|12px]] is the midpoint power from the estimated waveform by Equation (1),  [[Image:Draft_Liu_514209790-image46.png|18px]] the first gate (sampling) position beyond the theoretical midpoint power, and  [[Image:Draft_Liu_514209790-image47.png|18px]] and  [[Image:Draft_Liu_514209790-image48.png|24px]] are the measured waveform power values respectively.
230
231
<span id='_Hlk16926934'></span>
232
==3.3 Midpoint determination the based on the first-order difference quotient of waveform==
233
234
<span id='_Hlk16929773'></span><span id='_Hlk16687014'></span>The leading edge midpoint is determined based on the first-order difference quotient of waveform. The waveform is actually a discrete set of echo power on the sampling interval of the altimeter. The power of each gate is composed of the echo signal of reflective surface and noise. The noise of adjacent sampling gate is similar, and can be reduced by the first-order difference quotient. Thus, the unknown parameters can be estimated by using the Equation (2) to fit the first-order difference quotient. Then, the leading edge midpoint can be computed with Equation (4).
235
236
<span id='_Hlk16927062'></span><span id='_Hlk16930611'></span>The first-order difference quotient of waveform,   [[Image:Draft_Liu_514209790-image49.png|54px]] , can be computed as,
237
238
{| class="formulaSCP" style="width: 100%; text-align: center;" 
239
|-
240
| 
241
{| style="text-align: center; margin:auto;" 
242
|-
243
| [[Image:Draft_Liu_514209790-image50.png|186px]]
244
|}
245
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
246
|}
247
248
249
<span id='_Hlk16927182'></span>where  [[Image:Draft_Liu_514209790-image51.png|48px]] and  [[Image:Draft_Liu_514209790-image52.png|36px]] are the echo powers corresponding to gate  [[Image:Draft_Liu_514209790-image53.png|42px]] and  [[Image:Draft_Liu_514209790-image54.png|12px]] respectively, while  [[Image:Draft_Liu_514209790-image55.png|18px]] is the sampling interval. Equation (13) indicates that the  [[Image:Draft_Liu_514209790-image49.png|54px]] is correlated between different gates based on the covariance propagation law.
250
251
Similarly, these unknown parameters are estimated with the least squares method. The error equation is:
252
253
{| class="formulaSCP" style="width: 100%; text-align: center;" 
254
|-
255
| 
256
{| style="text-align: center; margin:auto;" 
257
|-
258
| [[Image:Draft_Liu_514209790-image56.png|114px]]
259
|}
260
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
261
|}
262
263
264
where  [[Image:Draft_Liu_514209790-image57.png|18px]] is a vector that indicates the difference between the estimated by Equation (2) and the first order difference quotient of waveform,  [[Image:Draft_Liu_514209790-image58.png|12px]] ( [[Image:Draft_Liu_514209790-image59.png|24px]] ,  [[Image:Draft_Liu_514209790-image60.png|18px]] ,  [[Image:Draft_Liu_514209790-image61.png|24px]] ) is the correction vector of unknown parameters, and  [[Image:Draft_Liu_514209790-image62.png|18px]] is the partial derivative matrix as
265
266
{| class="formulaSCP" style="width: 100%; text-align: center;" 
267
|-
268
| 
269
{| style="text-align: center; margin:auto;" 
270
|-
271
| [[Image:Draft_Liu_514209790-image63.png|240px]]
272
|}
273
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
274
|}
275
276
277
The three partial derivatives of the unknown parameters based on the function of first derivatives are formulated as,
278
279
{| class="formulaSCP" style="width: 100%; text-align: center;" 
280
|-
281
| 
282
{| style="text-align: center; margin:auto;" 
283
|-
284
| [[Image:Draft_Liu_514209790-image64.png|600px]]
285
|}
286
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)            
287
|}
288
289
{| class="formulaSCP" style="width: 100%; text-align: center;" 
290
|-
291
| 
292
{| style="text-align: center; margin:auto;" 
293
|-
294
| [[Image:Draft_Liu_514209790-image65.png|600px]]
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)   
297
|}
298
299
{| class="formulaSCP" style="width: 100%; text-align: center;" 
300
|-
301
| 
302
{| style="text-align: center; margin:auto;" 
303
|-
304
| [[Image:Draft_Liu_514209790-image66.png|444px]]
305
|}
306
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
307
|}
308
309
310
<span id='_Hlk16927232'></span>Due to the difference quotient  [[Image:Draft_Liu_514209790-image67.png|66px]] is computed by equation (13), it is correlated between different gates based on the covariance propagation law. The unknown parameters are estimated with the least squares estimator as:
311
312
{| class="formulaSCP" style="width: 100%; text-align: center;" 
313
|-
314
| 
315
{| style="text-align: center; margin:auto;" 
316
|-
317
| [[Image:Draft_Liu_514209790-image68.png|192px]]
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
320
|}
321
322
323
where  [[Image:Draft_Liu_514209790-image69.png|12px]] is the weight matrix as
324
325
{| class="formulaSCP" style="width: 100%; text-align: center;" 
326
|-
327
| 
328
{| style="text-align: center; margin:auto;" 
329
|-
330
| [[Image:Draft_Liu_514209790-image70.png|246px]]
331
|}
332
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
333
|}
334
335
336
The initial values of the unknown parameters are also determined by the OCOG algorithm. The unknown parameters are estimated until iterative convergence (the convergence criterion is similar to Equation 11). The waveform leading edge midpoint is computed via Equation (4). The midpoint obtained by this way is called the second wave derivative retracker (SWDR) in this paper.
337
338
<span id='_Hlk16930537'></span>Similar to Equation (12), the leading edge midpoint is redetermined. The leading edge midpoint power value is obtained by Equation (1), which is linearly interpolated to the adjacent power value of the leading edge of measured waveform to redetermine the midpoint. The midpoint obtained by this way is called the second leading edge interpolation retracker (SLEIR).
339
340
A flow chart of the new waveform retracking is shown in Fig. 2.
341
342
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
343
 [[Image:Draft_Liu_514209790-image71.png|384px]] </div>
344
345
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
346
Fig 2. Flow chart of waveform retracking based on waveform derivative</div>
347
348
=4. Experiment Results and Analysis=
349
350
<span id='_Hlk16781048'></span><span id='_Hlk16779792'></span>
351
==4.1 Comparison with crossover discrepancies of SSHs==
352
353
<span id='_Hlk16779736'></span><span id='_Hlk16839022'></span><span id='_Hlk16781462'></span>The crossover is the intersection of two tracks between ascending pass and descending pass. The crossover discrepancy of SSHs is an evaluation criterion of waveform retracking method in the open ocean. To obtain the statistical results, we define SSH as given by
354
355
{| class="formulaSCP" style="width: 100%; text-align: center;" 
356
|-
357
| 
358
{| style="text-align: center; margin:auto;" 
359
|-
360
| [[Image:Draft_Liu_514209790-image72.png|600px]]
361
|}
362
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
363
|}
364
365
366
<span id='_Hlk16780874'></span>where  [[Image:Draft_Liu_514209790-image73.png|24px]] is the altitude of Jason-2 satellite,  [[Image:Draft_Liu_514209790-image74.png|54px]] is the range between satellite and reflective surface (partial instrumental corrections included, i.e. distance antenna-COG, USO drift correction, internal path correction),  [[Image:Draft_Liu_514209790-image75.png|54px]] is the Doppler correction,  [[Image:Draft_Liu_514209790-image76.png|54px]] is the modeled instrumental correction,  [[Image:Draft_Liu_514209790-image77.png|84px]] is the system bias of instrument,  [[Image:Draft_Liu_514209790-image78.png|42px]] is the dry tropospheric correction which is calculated from the atmospheric pressure and tide published by the European Centre for Medium-range Weather Forecasts (ECMWF),  [[Image:Draft_Liu_514209790-image79.png|48px]] is the wet tropospheric correction, which is calculated from the data measured by the microwave radiometer carried by the satellite,  [[Image:Draft_Liu_514209790-image80.png|48px]] is the ionospheric delay corrected using Dual-frequency,  [[Image:Draft_Liu_514209790-image81.png|54px]] is the sea state bias correction, which is calculated by empirical fitting of significant wave height and wind speed,  [[Image:Draft_Liu_514209790-image82.png|42px]] (inverted barometer correction) and  [[Image:Draft_Liu_514209790-image83.png|42px]] (high frequency atmospheric pressure loading correction) are the dynamic atmospheric corrections,  [[Image:Draft_Liu_514209790-image84.png|42px]] is the geocentric ocean tide height correction, obtained by GOT4.10 model,  [[Image:Draft_Liu_514209790-image85.png|42px]] is the solid earth tide height correction, and  [[Image:Draft_Liu_514209790-image86.png|36px]] is the pole tide height correction. These above corrections are available in the SGDRs.
367
368
<span id='_Hlk16781311'></span>The range correction  [[Image:Draft_Liu_514209790-image87.png|48px]] of waveform retracking is given by
369
370
{| class="formulaSCP" style="width: 100%; text-align: center;" 
371
|-
372
| 
373
{| style="text-align: center; margin:auto;" 
374
|-
375
| [[Image:Draft_Liu_514209790-image88.png|222px]]
376
|}
377
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
378
|}
379
380
381
where  [[Image:Draft_Liu_514209790-image89.png|12px]] is the leading edge midpoint,  [[Image:Draft_Liu_514209790-image90.png|12px]] the nominal tracking gate ( [[Image:Draft_Liu_514209790-image91.png|12px]] =32 gate of Jason-2 altimeter wavefrom),  [[Image:Draft_Liu_514209790-image92.png|30px]] the sampling interval of a gate (1 gate=3.125 ns of Jason-2 altimeter).
382
383
<span id='_Hlk16839791'></span><span id='_Hlk16779852'></span>The waveform data of cycles 001 to 200 are processed. For assessing the performance of the new retracker, we compared the retracked SSH from Threshold 50%, OCOG and 5-β retrackers, as well as the Ice-1 and MLE4 ( or Ocean) retrackers from SGDRs. Also, we obtained the ALES [19] retracked SSH data ([http://openadb.dgfi.tum.de/ http://openadb.dgfi.tum.de/]), which is widely recognized as a high-precision SSH products [22, 32]. The retracked SSHs and the crossover discrepancies of SSHs in each cycle were computed. Some data of cycles are missing (Such as cycles 174, 175, 190, 191), and the gross error (>1 m) of the crossover discrepancies of SSHs are removed. There are 1502 crossover discrepancies in total. The statistics of crossover discrepancies of SSHs obtained by several retrackers are listed in Table 1. The Unretracked represents the raw SSHs without waveform retracking.
384
385
By analyzing the RMS of the crossover discrepancies of SSHs, it is found that the results of several retracking methods are smaller than unretracked results, indicating that the waveform retracking can reduce the RMS of crossover discrepancies of SSH and improve the quality of satellite altimeter data. The RMSs obtained by FWDR, FLEIR, SWDR and SLEIR are 0.108 m, 0.107 m, 0.114 m and 0.119 m, which are smaller than 0.124 m, 0.177 m and 0.121 m obtained by Threshold 50%, OCOG and 5-β methods, respectively, indicating that the new methods can get more accurate results than the common methods in this region. The RMSs obtained by new mthods, which are less than 0.192 m, and 0.112 m obtained by Ice-1 and MLE4 methods from SGDR data, indicating that it can provide more accurate results than SGDRs (retracked SSH by MLE4, Ice-1 retracker) in the open ocean. In addition, the RMSs obtained by FWDR and FLEIR are 0.108 m and 0.107 m, which are smaller than 0.114 m obtained by MLE3 retracker, indicating that the midpoint determined by two parameters ( [[Image:Draft_Liu_514209790-image24.png|12px]] , [[Image:Draft_Liu_514209790-image27.png|18px]] ) is more accurate than one parameter ( [[Image:Draft_Liu_514209790-image24.png|12px]] ).
386
387
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
388
Table 1. Statistics of crossover discrepancies of SSHs obtained by several retracking methods (Unit: m)</div>
389
390
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
391
|-
392
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Retracker
393
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|MAX
394
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|MIN
395
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|MEAN
396
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|STD
397
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|RMS
398
|-
399
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|Unretracked
400
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.996
401
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|-0.805
402
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.001
403
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.225
404
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.225
405
|-
406
|  style="text-align: center;vertical-align: top;"|Threshold(50%)
407
|  style="text-align: center;vertical-align: top;"|0.936
408
|  style="text-align: center;vertical-align: top;"|-0.714
409
|  style="text-align: center;vertical-align: top;"|-0.004
410
|  style="text-align: center;vertical-align: top;"|0.124
411
|  style="text-align: center;vertical-align: top;"|0.124
412
|-
413
|  style="text-align: center;vertical-align: top;"|OCOG
414
|  style="text-align: center;vertical-align: top;"|0.940
415
|  style="text-align: center;vertical-align: top;"|-0.981
416
|  style="text-align: center;vertical-align: top;"|-0.005
417
|  style="text-align: center;vertical-align: top;"|0.177
418
|  style="text-align: center;vertical-align: top;"|0.177
419
|-
420
|  style="text-align: center;vertical-align: top;"|5-β
421
|  style="text-align: center;vertical-align: top;"|0.692
422
|  style="text-align: center;vertical-align: top;"|-0.692
423
|  style="text-align: center;vertical-align: top;"|-0.007
424
|  style="text-align: center;vertical-align: top;"|0.120
425
|  style="text-align: center;vertical-align: top;"|0.121
426
|-
427
|  style="text-align: center;vertical-align: top;"|Ice-1
428
|  style="text-align: center;vertical-align: top;"|0.783
429
|  style="text-align: center;vertical-align: top;"|-0.774
430
|  style="text-align: center;vertical-align: top;"|-0.031
431
|  style="text-align: center;vertical-align: top;"|0.190
432
|  style="text-align: center;vertical-align: top;"|0.192
433
|-
434
|  style="text-align: center;vertical-align: top;"|MLE3
435
|  style="text-align: center;vertical-align: top;"|0.716
436
|  style="text-align: center;vertical-align: top;"|-0.506
437
|  style="text-align: center;vertical-align: top;"|-0.005
438
|  style="text-align: center;vertical-align: top;"|0.114
439
|  style="text-align: center;vertical-align: top;"|0.114
440
|-
441
|  style="text-align: center;vertical-align: top;"|MLE4
442
|  style="text-align: center;vertical-align: top;"|0.773
443
|  style="text-align: center;vertical-align: top;"|-0.652
444
|  style="text-align: center;vertical-align: top;"|-0.004
445
|  style="text-align: center;vertical-align: top;"|0.112
446
|  style="text-align: center;vertical-align: top;"|0.112
447
|-
448
|  style="text-align: center;vertical-align: top;"|ALES
449
|  style="text-align: center;vertical-align: top;"|0.741
450
|  style="text-align: center;vertical-align: top;"|-0.724
451
|  style="text-align: center;vertical-align: top;"|-0.002
452
|  style="text-align: center;vertical-align: top;"|0.105
453
|  style="text-align: center;vertical-align: top;"|0.105
454
|-
455
|  style="text-align: center;vertical-align: top;"|FWDR
456
|  style="text-align: center;vertical-align: top;"|0.693
457
|  style="text-align: center;vertical-align: top;"|-0.524
458
|  style="text-align: center;vertical-align: top;"|-0.003
459
|  style="text-align: center;vertical-align: top;"|0.108
460
|  style="text-align: center;vertical-align: top;"|0.108
461
|-
462
|  style="text-align: center;vertical-align: top;"|FLEIR
463
|  style="text-align: center;vertical-align: top;"|0.696
464
|  style="text-align: center;vertical-align: top;"|-0.623
465
|  style="text-align: center;vertical-align: top;"|-0.003
466
|  style="text-align: center;vertical-align: top;"|0.107
467
|  style="text-align: center;vertical-align: top;"|0.107
468
|-
469
|  style="text-align: center;vertical-align: top;"|SWDR
470
|  style="text-align: center;vertical-align: top;"|0.740
471
|  style="text-align: center;vertical-align: top;"|-0.714
472
|  style="text-align: center;vertical-align: top;"|0.000
473
|  style="text-align: center;vertical-align: top;"|0.114
474
|  style="text-align: center;vertical-align: top;"|0.114
475
|-
476
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|SLEIR
477
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.772
478
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|-0.749
479
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|-0.005
480
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.119
481
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.119
482
|}
483
484
485
Furthermore, we comparison with the retracked SSH by ALES retraker. The RMS obtained by FLEIR is 0.107 m, which is slightly smaller than 0.105 m obtained by ALES products. The difference may be caused by different correction models, such as sea state bias correction and ocean tide correction. This also shown that the retracked SSH by new methods is reliable compared with the SSH obtained by ALES products.
486
487
<span id='_Hlk16924105'></span><span id='_Hlk16781133'></span>
488
==4.2 Comparison with geoid heights ==
489
490
In order to contrast and analyze the retracked SSHs, the regional geoid heights are derived from the Earth Gravity Field Model EGM2008 [33] up to degree 2160 (Http://icgem.gfz-postdam.de/ICGEM). The performance of retracked SSHs can be assessed in comparison with geoid heights [7,34].
491
492
<span id='_Hlk16926179'></span>If the retracked SSHs did not resemble the geoid heights, then the retracked SSHs was considered to be not valid, even if it had been able to correct the errors of SSH [6], [9], [35]. The correlation coefficient and improvement of percentage (IMP) of the difference between retracked SSHs and geoid heights are used to analyze the quality of retracked SSHs. It is widely accepted that the higher the IMP value is, the better the retracked result is.The IMP can be computed as
493
494
{| class="formulaSCP" style="width: 100%; text-align: center;" 
495
|-
496
| 
497
{| style="text-align: center; margin:auto;" 
498
|-
499
| [[Image:Draft_Liu_514209790-image93.png|222px]]
500
|}
501
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
502
|}
503
504
505
where  [[Image:Draft_Liu_514209790-image94.png|36px]] is the improvement percentage,  [[Image:Draft_Liu_514209790-image95.png|30px]] is the STD of the difference between geoid heights and SSHs without waveform retracking correction.  [[Image:Draft_Liu_514209790-image96.png|48px]] is the STD of the difference between geoid heights and altimetry-derived SSHs with waveform retracking correction.
506
507
<span id='OLE_LINK5'></span><span id='_Hlk16794322'></span>Fig. 3 shows retracked SSHs and geoid heights of by several methods. For the image to be clearly distinguishable, we only show results from the Ice-1, MLE4, Threshold 50% and FLEIR methods.
508
509
[[Image:Draft_Liu_514209790-image97.png|600px]]
510
511
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
512
Fig 3. Comparison of the Ice-1, MLE4, Threshold 50%, FLEIR retracked SSHs and geoid heights.</div>
513
514
<span id='_Hlk16793133'></span>Table 2 gives the statistical results of the IMP and correlation coefficient of the differences between retracked SSHs (cycle010pass229) and geoid heights. The cycle is selected randomly, and using other cycles will not alter our findings.
515
516
<div id="_Hlk16838197" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
517
Table.2 Statistics of the differences between retracked SSHs and geoid heights (Unit: m)</div>
518
519
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
520
|-
521
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Retracker
522
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|MAX
523
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|MIN
524
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|MEAN
525
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|STD
526
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|IMP/(%)
527
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Correlation coefficient 
528
|-
529
|  style="border-top: 1pt solid black;text-align: center;"|Unretracked
530
|  style="border-top: 1pt solid black;text-align: center;"|2.118
531
|  style="border-top: 1pt solid black;text-align: center;"|0.388
532
|  style="border-top: 1pt solid black;text-align: center;"|1.149
533
|  style="border-top: 1pt solid black;text-align: center;"|0.265
534
|  style="border-top: 1pt solid black;text-align: center;"|
535
|  style="border-top: 1pt solid black;text-align: center;"|0.921
536
|-
537
|  style="text-align: center;"|Threshold(50%)
538
|  style="text-align: center;"|2.799
539
|  style="text-align: center;"|0.913
540
|  style="text-align: center;"|1.551
541
|  style="text-align: center;"|0.222
542
|  style="text-align: center;"|16.2%
543
|  style="text-align: center;"|0.940
544
|-
545
|  style="text-align: center;"|OCOG 
546
|  style="text-align: center;"|3.096
547
|  style="text-align: center;"|0.517
548
|  style="text-align: center;"|2.075
549
|  style="text-align: center;"|0.273
550
|  style="text-align: center;"|-3.0%
551
|  style="text-align: center;"|0.920
552
|-
553
|  style="text-align: center;"|Βeta-5
554
|  style="text-align: center;"|3.104
555
|  style="text-align: center;"|0.906
556
|  style="text-align: center;"|1.461
557
|  style="text-align: center;"|0.226
558
|  style="text-align: center;"|14.7%
559
|  style="text-align: center;"|0.939
560
|-
561
|  style="text-align: center;"|Ice-1
562
|  style="text-align: center;"|3.144
563
|  style="text-align: center;"|1.328
564
|  style="text-align: center;"|1.777
565
|  style="text-align: center;"|0.239
566
|  style="text-align: center;"|9.8%
567
|  style="text-align: center;"|0.930
568
|-
569
|  style="text-align: center;"|MLE4
570
|  style="text-align: center;"|2.775
571
|  style="text-align: center;"|0.959
572
|  style="text-align: center;"|1.463
573
|  style="text-align: center;"|0.225
574
|  style="text-align: center;"|15.1%
575
|  style="text-align: center;"|0.939
576
|-
577
|  style="text-align: center;vertical-align: top;"|FWDR
578
|  style="text-align: center;"|2.700
579
|  style="text-align: center;"|0.928
580
|  style="text-align: center;"|1.456
581
|  style="text-align: center;"|0.217
582
|  style="text-align: center;"|18.1%
583
|  style="text-align: center;"|0.944
584
|-
585
|  style="text-align: center;vertical-align: top;"|FLEIR
586
|  style="text-align: center;"|2.601
587
|  style="text-align: center;"|0.946
588
|  style="text-align: center;"|1.456
589
|  style="text-align: center;"|0.216
590
|  style="text-align: center;"|18.5%
591
|  style="text-align: center;"|0.944
592
|-
593
|  style="text-align: center;vertical-align: top;"|SWDR
594
|  style="text-align: center;"|2.533
595
|  style="text-align: center;"|0.921
596
|  style="text-align: center;"|1.480
597
|  style="text-align: center;"|0.219
598
|  style="text-align: center;"|17.4%
599
|  style="text-align: center;"|0.943
600
|-
601
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|SLEIR
602
|  style="border-bottom: 2pt solid black;text-align: center;"|2.739
603
|  style="border-bottom: 2pt solid black;text-align: center;"|0.909
604
|  style="border-bottom: 2pt solid black;text-align: center;"|1.458
605
|  style="border-bottom: 2pt solid black;text-align: center;"|0.226
606
|  style="border-bottom: 2pt solid black;text-align: center;"|14.7%
607
|  style="border-bottom: 2pt solid black;text-align: center;"|0.939
608
|}
609
610
611
Table 2 provides a summary of results, where the STD (0.265 m) of the difference is large, which indicates that the unretracked SSH has poor smoothness and fluctuation. After waveform retracking, the STD is reduced, and the smoothness of SSH is improved, which eliminated large abrupt changes and maintained good smoothness of SSH. The IMP and correlation coefficient obtained by new methods are better than the results of the common methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4% and 14.7%, respectively, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1, and MLE4 methods are 16.2%, -3.0%, 14.7%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR and SLEIR are 0.944, 0.944, 0.943 and 0.939 respectively, while the value obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 are 0.940, 0.920, 0.939, 0.930 and 0.939.
612
613
Therefore, it is concluded that the new proposed retracking methods in this paper are reliable, and exhibit better performance than the common retrackers.
614
615
<span id='_Hlk16924416'></span>
616
==4.3 Comparsion with tide gauge records==
617
618
<span id='_Hlk16779945'></span><span id='_Hlk16780670'></span>In addition, we compared the retracked SSH using several retracking methods with the tide gauge records in the coastal area. As the tide gauge records are not corrected for tidal and dynamic atmospheric effects, we also do not apply these corrections to the altimeter data by employing [23], [36]
619
620
{| class="formulaSCP" style="width: 100%; text-align: center;" 
621
|-
622
| 
623
{| style="text-align: center; margin:auto;" 
624
|-
625
| [[Image:Draft_Liu_514209790-image98.png|600px]]
626
|}
627
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
628
|}
629
630
631
<span id='_Hlk16782260'></span>where  [[Image:Draft_Liu_514209790-image99.png|36px]] is the solid earth tide correction; the other corrections is the same as Equation (21), and all corrections are available in the SGDRs.
632
633
<span id='_Hlk16779974'></span>The hourly tide gauge records were interpolated to the time of the altimeter measurement. To avoid possible discrepancy datum of both altimetry-derived SSHs and tide gauge records, the temporal mean is removed from each time series, referring to as height anomaly [15]. For assessed the performance of the retracked SSH in the coastal area, we have categorized the altimetry-derived SSH to two spatial intervasl: namely 10-20 km and 0-10 km away from coastline, correspond to cases 1 and 2, respectively. Finally, the correlation coefficient and STD of the difference between height anomaly from several retrackers and tide gauge records were computed.
634
635
<span id='_Hlk16841631'></span><span id='_Hlk16934444'></span><span id='_Hlk16924527'></span>In the near QBTG, the height anomaly from several retrackers and tide gauge records in cases 1 and 2 are shown in Figs 4 and 5, respectively. For the image to be clearly distinguishable, we only shown results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
636
637
[[Image:Draft_Liu_514209790-image100.png|600px]]
638
639
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
640
Fig 4. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50% and FLEIR retrackers and QBTG records in case 1.</div>
641
642
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
643
 [[Image:Draft_Liu_514209790-image101.png|600px]] </div>
644
645
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
646
Fig 5. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and QBTG records in case 2.</div>
647
648
<span id='_Hlk16924610'></span><span id='_Hlk16841668'></span>Table 3 gives the STD and correlation coefficient of the height anomaly between the retracked SSH and QBTG records in cases 1 and 2.
649
650
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
651
Table 3. Statistical results of height anomaly between the retracked SSH and QBTG records</div>
652
653
{| style="width: 100%;border-collapse: collapse;" 
654
|-
655
|  rowspan='2' style="border-top: 2pt solid black;text-align: center;"|Retracker
656
|  colspan='2'  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Case 1
657
|  colspan='2'  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Case 2
658
|-
659
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|STD (m)
660
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Correlation
661
662
coefficient
663
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|STD (m)
664
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Correlation
665
666
coefficient
667
|-
668
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|Unretracked
669
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.302
670
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.789
671
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.370
672
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.666
673
|-
674
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
675
|  style="text-align: center;vertical-align: top;"|0.248
676
|  style="text-align: center;vertical-align: top;"|0.854
677
|  style="text-align: center;vertical-align: top;"|0.272
678
|  style="text-align: center;vertical-align: top;"|0.820
679
|-
680
|  style="text-align: center;vertical-align: top;"|OCOG
681
|  style="text-align: center;vertical-align: top;"|0.271
682
|  style="text-align: center;vertical-align: top;"|0.813
683
|  style="text-align: center;vertical-align: top;"|0.334
684
|  style="text-align: center;vertical-align: top;"|0.729
685
|-
686
|  style="text-align: center;vertical-align: top;"|5-β
687
|  style="text-align: center;vertical-align: top;"|0.237
688
|  style="text-align: center;vertical-align: top;"|0.858
689
|  style="text-align: center;vertical-align: top;"|0.293
690
|  style="text-align: center;vertical-align: top;"|0.786
691
|-
692
|  style="text-align: center;vertical-align: top;"|Ice-1
693
|  style="text-align: center;vertical-align: top;"|0.262
694
|  style="text-align: center;vertical-align: top;"|0.837
695
|  style="text-align: center;vertical-align: top;"|0.303
696
|  style="text-align: center;vertical-align: top;"|0.778
697
|-
698
|  style="text-align: center;vertical-align: top;"|MLE4
699
|  style="text-align: center;vertical-align: top;"|0.242
700
|  style="text-align: center;vertical-align: top;"|0.860
701
|  style="text-align: center;vertical-align: top;"|0.278
702
|  style="text-align: center;vertical-align: top;"|0.809
703
|-
704
|  style="text-align: center;vertical-align: top;"|FWDR
705
|  style="text-align: center;vertical-align: top;"|0.232
706
|  style="text-align: center;vertical-align: top;"|0.870
707
|  style="text-align: center;vertical-align: top;"|0.271
708
|  style="text-align: center;vertical-align: top;"|0.817
709
|-
710
|  style="text-align: center;vertical-align: top;"|FLEIR
711
|  style="text-align: center;vertical-align: top;"|0.236
712
|  style="text-align: center;vertical-align: top;"|0.867
713
|  style="text-align: center;vertical-align: top;"|0.269
714
|  style="text-align: center;vertical-align: top;"|0.821
715
|-
716
|  style="text-align: center;vertical-align: top;"|SWDR
717
|  style="text-align: center;vertical-align: top;"|0.232
718
|  style="text-align: center;vertical-align: top;"|0.871
719
|  style="text-align: center;vertical-align: top;"|0.269
720
|  style="text-align: center;vertical-align: top;"|0.820
721
|-
722
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|SLEIR
723
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.237
724
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.867
725
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.277
726
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.811
727
|}
728
729
730
Table 3 in which the STD of the difference of height anomaly with waveform retracking is smaller than the unretracked and the correlation coefficient is higher than the result of unretracked, shows that each retracker method improves the accuracy of SSH in cases 1 and 2. There is a high correlation coefficient (~0.8) of the height anomaly between retracked SSH and QBTG records in case 1. The STD obtained by MLE4 is 0.242 m, which is smaller than 0.248 m, 0.271 m, 0.245 m, and 0.262 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.232 m, 0.236 m, 0.232 m and 0.237 m respectively, which are also smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.860, which is higher than 0.854, 0.813, 0.858 and 0.837 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.870, 0.867, 0.871 and 0.867, which are also higher than MLE4 method.
731
732
The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are the same as that of Threshold 50%, which are better than the result of OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWRand SLEIR are 0.271 m, 0.269 m, 0.269 m, and 0.277 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.272 m, 0.334 m, 0.293 m, 0.303 m and 0.278 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.817, 0.821, 0.820 and 0.811, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.820, 0.729, 0.786, 0.778, and 0.809. In addition, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in cases 1 and 2.
733
734
<span id='_Hlk16841801'></span><span id='_Hlk16924635'></span>In the near KaohTG, the height anomaly from several retrackers and KaohTG records are shown in Figs. 6 and 7, respectively. Similarly, we only shown the results obtained by the Ice-1, MLE4, Threshold 50% and FLEIR methods.
735
736
[[Image:Draft_Liu_514209790-image102.png|600px]]
737
738
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
739
Fig 6. Height anomaly variation obtained by the Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 1.</div>
740
741
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
742
 [[Image:Draft_Liu_514209790-image103.png|600px]] </div>
743
744
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
745
Fig 7. Height anomaly variation obtained by Ice-1, MLE4, Threshold 50%, FLEIR retrackers and KaohTG records in case 2.</div>
746
747
<span id='_Hlk16934747'></span><span id='_Hlk16841830'></span>Table 4 gives the STD and correlation coefficient of the height anomaly between the retracked SSH and KaohTG records in cases 1 and 2.
748
749
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
750
'''Table 4. Statistical results of height anomaly between the retracked SSH and KaohTG records'''</div>
751
752
{| style="width: 100%;border-collapse: collapse;" 
753
|-
754
|  rowspan='2' style="border-top: 2pt solid black;text-align: center;"|Retracker
755
|  colspan='2'  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Case 1
756
|  colspan='2'  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Case 2
757
|-
758
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|STD (m)
759
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Correlation
760
761
coefficient
762
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|STD (m)
763
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Correlation
764
765
coefficient
766
|-
767
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|Unretracked
768
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.227
769
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.626
770
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.248
771
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.514
772
|-
773
|  style="text-align: center;vertical-align: top;"|Threshold (50%)
774
|  style="text-align: center;vertical-align: top;"|0.153
775
|  style="text-align: center;vertical-align: top;"|0.819
776
|  style="text-align: center;vertical-align: top;"|0.195
777
|  style="text-align: center;vertical-align: top;"|0.696
778
|-
779
|  style="text-align: center;vertical-align: top;"|OCOG
780
|  style="text-align: center;vertical-align: top;"|0.234
781
|  style="text-align: center;vertical-align: top;"|0.623
782
|  style="text-align: center;vertical-align: top;"|0.268
783
|  style="text-align: center;vertical-align: top;"|0.407
784
|-
785
|  style="text-align: center;vertical-align: top;"|5-β
786
|  style="text-align: center;vertical-align: top;"|0.149
787
|  style="text-align: center;vertical-align: top;"|0.823
788
|  style="text-align: center;vertical-align: top;"|0.208
789
|  style="text-align: center;vertical-align: top;"|0.638
790
|-
791
|  style="text-align: center;vertical-align: top;"|Ice-1
792
|  style="text-align: center;vertical-align: top;"|0.188
793
|  style="text-align: center;vertical-align: top;"|0.740
794
|  style="text-align: center;vertical-align: top;"|0.239
795
|  style="text-align: center;vertical-align: top;"|0.560
796
|-
797
|  style="text-align: center;vertical-align: top;"|MLE4
798
|  style="text-align: center;vertical-align: top;"|0.141
799
|  style="text-align: center;vertical-align: top;"|0.841
800
|  style="text-align: center;vertical-align: top;"|0.220
801
|  style="text-align: center;vertical-align: top;"|0.632
802
|-
803
|  style="text-align: center;vertical-align: top;"|FWDR
804
|  style="text-align: center;vertical-align: top;"|0.145
805
|  style="text-align: center;vertical-align: top;"|0.828
806
|  style="text-align: center;vertical-align: top;"|0.198
807
|  style="text-align: center;vertical-align: top;"|0.679
808
|-
809
|  style="text-align: center;vertical-align: top;"|FLEIR
810
|  style="text-align: center;vertical-align: top;"|0.135
811
|  style="text-align: center;vertical-align: top;"|0.851
812
|  style="text-align: center;vertical-align: top;"|0.191
813
|  style="text-align: center;vertical-align: top;"|0.711
814
|-
815
|  style="text-align: center;vertical-align: top;"|SWDR
816
|  style="text-align: center;vertical-align: top;"|0.140
817
|  style="text-align: center;vertical-align: top;"|0.838
818
|  style="text-align: center;vertical-align: top;"|0.183
819
|  style="text-align: center;vertical-align: top;"|0.716
820
|-
821
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|SLEIR
822
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.143
823
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.833
824
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.201
825
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.685
826
|}
827
828
829
The Table 4 shows that each retracker methods improves the accuracy of SSH in cases 1 and 2. There is a small STD and high correlation coefficient (~0.8) of the height anomaly between retracked SSH and tide gauge (KaohTG) distance from coastline 10-20 km. The STD obtained by MLE4 is 0.141 m, which is smaller than 0.153 m, 0.234 m, 0.149 m, 0.188 m obtained by Threshold 50%, OCOG, 5-β and Ice-1 methods in case 1. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.145 m, 0.135 m, 0.140 m and 0.143 m, which are smaller than MLE4 method. The correlation coefficient obtained by MLE4 is 0.841, which is higher than 0.819, 0.623, 0.823 and 0.740 obtained by Threshold (50%), OCOG, 5-β and Ice-1 methods in case 1. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.828, 0.851, 0.838 and 0.833, which are higher than MLE4 method.
830
831
<span id='_Hlk17135548'></span>The STDs and correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are better than the result of Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in case 2. The STDs obtained by FDWR, FLEIR, SDWR and SLEIR are 0.198 m, 0.191 m, 0.183 m and 0.201 m, while the STDs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.195 m, 0.268 m, 0.208 m, 0.239 m and 0.220 m. The correlation coefficients obtained by FDWR, FLEIR, SDWR and SLEIR are 0.679, 0.711, 0.716, and 0.685, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.696, 0.407, 0.630, 0.560 and 0.632. Also, the STD and correlation coefficient obtained by FLEIR are better than the result of FDWR in case 1 and 2.
832
833
<span id='_Hlk16924739'></span><span id='_Hlk16925666'></span>Through comparison with two tide gauges, we reached the following conclusions. The performance of MLE4 method is better than Threshold 50%, OCOG, 5-β, Ice-1 methods in case 1, and the performance of Threshold 50% method is better than OCOG, 5-β, Ice-1 and MLE4 methods in case 2. But, the new methods have a better performance than Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. The STD and correlation coefficient obtained by FLEIR are better than the result of FDWR, indicating that the re-determined midpoint is more accurate through interpolating the estimated lead edge midpoint on the measured waveform.
834
835
Therefore, the accuracy of the new method is better than that of the common retrackers. The new method has been validated in the coastal area.
836
837
=5. Conclusion=
838
839
In order to deal with the disturbed satellite radar altimeter echo waveform in the open ocean and coastal area, a retracking method based on waveform derivative is proposed in this paper. The leading edge midpoint is determined by the second derivative zero point, and combining the advantages of function-fitting and empirical statistical method, the leading edge midpoint is redetermined by interpolating the theoretical power value of the estimated midpoint to the leading edge of measured waveform. Four new waveform retracking results are given.
840
841
By processing the waveforms from the Jason-2 SGDRs, we computed the retracked SSHs. In the open ocean, through comparison with the RMS of crossover discrepancies of SSH, the RMSs obtained by FWDR, FLEIR, SWDR, SLEIR are 0.108 m, 0.107 m, 0.114 m, and 0.119 m respectively, which are smaller than 0.124 m, 0.177 m, 0.121 m, 0.192 m, and 0.112 obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods. Further, through comparison with the geoid heights, the IMP and correlation coefficient of the differences between retracked SSHs with respect to geoid heights were computed. The IMP and correlation coefficient obtained by new retracking methods are better than the result of common retracker methods. The IMPs obtained by FWDR, FLEIR, SWDR, and SLEIR are 18.1%, 18.5%, 17.4%, and 14.7%, while the IMPs obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 16.2%, 14.7%, -3.0%, 9.8% and 15.1%. The correlation coefficients obtained by FWDR, FLEIR, SWDR, and SLEIR are 0.944, 0.944, 0.943, and 0.939, while the correlation coefficients obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods are 0.940, 0.920, 0.939, 0.930 and 0.939.
842
843
In addtion, through comparison with tide gauge records, the STD and correlation coefficient of the height anomaly between the retracked SSH and tide gauge records were computed. The STDs obtained by the new method are 0.135-0.269 m, which are better than 0.153-0.272 m, 0.234-0.334 m, 0.149-0.293 m, 0.188-0.303 m, and 0.141-0.278 m obtained by Threshold 50%, OCOG, 5-β, Ice-1 and MLE4 methods in cases 1 and 2. Both in the open ocean and coastal area, the performance of the new method is better than the Threshold 50%, OCOG, 5-β methods as well as the Ice-1 and MLE4 retracker from SGDRs.
844
845
<span id='_Hlk16925585'></span>Therefore, the new method has been validated from Jason-2 SGDRs, it can recover more reliable SSH and improve the SGDRs quality both in the open ocean and coastal area. For the improvement of the quanlity of satellite altimeter data, especially the processing of waveform data, it also provides a new way for studying waveform retracking.
846
847
==Acknowledgments==
848
849
We are very grateful to AVISO for providing the SGDRs, and the University of Hawaii for providing the tide gauge records. This research was funded by National Natural Science Foundation of China (Grant Nos. 41774001, 41374009, 41874091) and SDUST Research Fund (Grant No. 2014TDJH101).
850
851
==References==
852
853
[1] Fu L.L., Cazenave A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, California: San Diego Academic Press, 373-375, 2001.
854
855
[2] Guo J.Y., Wang J.B., Hu Z.B., Hwang C.W., Chen C.F., Gao Y.G.. Temporal-spatial variations of sea level over Chinese seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chinese Journal of Geophysics, 58(9): 3103-3120, 2015.
856
857
[3] Hsiao Y.S., Hwang C., Cheng Y.S., Chen L.C., Hsu H.J., Tsai J.H., Liu C.L., Wang C.C., Kao Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sensing of Environment, 176: 69-83, 2016.
858
859
[4] Stammer D., Cazenave A. Satellite Altimetry Over Oceans and Land Surfaces, Florida: Taylor & Francis Boca Raton, ISBN: 978-1-4987-4345-7, 2017.
860
861
[5] Zhu C., Guo J., Hwang C., Gao J., Yuan J., Liu X. How HY-2A/GM altimeter performs in marine gravity derivation: assessment in the South China Sea. Geophysical Journal International, Forthcoming 2019.
862
863
[6] Gómez-Enri J., González C. J., Passaro M., Vignudelli S., Álvarez O., Cipollini P., Mañanes R., Bruno M., Lopez-Carmona P., Izquierdo A. Wind-induced cross-strait sea level variability in the Strait of Gibraltar from coastal altimetry and in-situ measurements. Remote sensing of environment, 221: 596-608, 2019.
864
865
[7] Hwang C., Guo J., Deng X., Hsu H.Y., Liu Y. Coastal gravity anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the role of airborne gravity data. Journal of Geodesy, 80(4): 204-216, 2006.
866
867
[8] Guo J.Y., Gao Y.G., Hwang C.W., Sun J.L. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Science China Earth Sciences, 53(4): 610-616, 2010.
868
869
[9] Huang Z., Wang H., Luo Z., Shum C., Tseng K.H., Zhong B. Improving Jason-2 sea surface heights within 10 km offshore by retracking decontaminated waveforms. Remote Sensing, 9(10): 1077, 2017.
870
871
<span id='OLE_LINK8'></span><span id='OLE_LINK9'></span>[10] Cipollini P., Calafat F.M., Jevrejeva S., Melet A., Prandi P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surveys in Geophysics, 38(1): 33-57, 2017.
872
873
[11] Lyszkowicz A.B., Bernatowicz A. Current state of art of satellite altimetry. Geodesy and Cartography, 66(2): 259-270, 2017.
874
875
[12] Anzenhofer M., Shum C.K., Renstch M. Coastal altimetry and applications. Dept Geod Sci and Surveying, Ohio State University, Columbus, 1999..
876
877
[13] Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 2011.
878
879
[14] Davis C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Transactions on Geoscience & Remote Sensing, 35(4): 974-979, 1997.
880
881
[15] Martin T.V., Zwally H.J., Brenner A.C., Bindschadler R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical Research, 88(C3): 1608-1616, 1983.
882
883
[16] Guo J., Hwang C., Chang X., Liu Y. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in Natural Science, 16(7): 732-738, 2006.
884
885
[17] Guo J.Y., Gao Y.G., Chang X.T., Hwang C.W. Optimal threshold algorithm of EnviSat waveform retracking over coastal sea. Chinese Journal of Geophysics, 53(4): 807-814, 2010b.
886
887
[18] Idris N.H., Deng X. The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Marine Geodesy, 35(sup1): 217-237, 2012.
888
889
[19] Passaro M., Cipollini P., Vignudelli S., Quartly G.D., Snaith H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145: 173-189, 2014.
890
891
[20] Tseng K.H., Shum C.K., Yi Y., Emery W.J., Kuo C.Y., Lee H., Wang H.H. The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience & Remote Sensing, 52(2): 991-1001, 2013.
892
893
[21] Guo J., Chang X., Gao Y., Sun J., Hwang C. Lake level variations monitored with satellite altimetry waveform retracking. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2(2): 80-86, 2009.
894
895
[22] Peng F., Deng X. A new retracking technique for Brown peaky altimetric waveforms. Marine Geodesy, 41(2): 99-125, 2017.
896
897
[23] Arabsahebi R., Voosoghi B., Tourian M.J. The inflection-point retracking algorithm: improved Jason-2 sea surface heights in the Strait of Hormuz. Marine Geodesy, 41(4): 331-352, 2018.
898
899
[24] Brown G. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1): 67-74, 1977.
900
901
[25] Dumont J.P., Rosmorduc V., Picot N., Bronner E., Desai S., Bonekamp H. OSTM/Jason-2 products Hand-book. available online [http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j2.pdf], 2011.
902
903
[26] Deng X., Featherstone W.E., Hwang C., Berry P.A.M. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4): 249-271 ,2002.
904
905
[27] Benveniste J., Cipollini P., Vignudelli S. Challenges and Opportunities for Coastal Altimetry, Eos Trans. AGU, 98, 2017.
906
907
[28] Amarouche L., Thibaut P., Zanife O.Z., Dumont J.P., Vincent P., Steunou N. Improving the Jason-1 ground retracking to better account for attitude effects. Marine Geodesy, 27(1-2): 171-197, 2004.
908
909
[29] Quartly G.D. Optimizing σ0 information from the Jason-2 altimeter. IEEE Geoscience & Remote Sensing Letters, 6(3): 398-402, 2009.
910
911
[30] Gommenginger C., Thibaut P., Fenoglio-Marc L., Quartly G., Deng X., Gomez-Enri J., Challenor P., Gao Y. Retracking altimeter waveforms near coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J. Coastal altimetry. Berlin Heidelberg: Springer-Verlag, 61-102, 2011.
912
913
[31] Wingham D.J., Rapley C.G., Griffiths H. New techniques in satellite altimeter tracking systems. In proceedings of the IGARSS’86 Symposium. Zurich, Switzerland, 8-11 September, 1986.
914
915
[32] Xu X.Y., Birol F., Cazenave A. Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sensing, 10(2): 282, 2018.
916
917
[33] Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008(EGM2008). Journal of Geophysical Research, 117: B04406, 2012.
918
919
[34] Khaki M., Forootan E., Sharifi M.A. Satellite radar altimetry waveform retracking over the Caspian Sea. International Journal of Remote Sensing, 35(17): 6329-6356, 2014.
920
921
[35] Lee H., Shum C.K., Emery W., Calmant S., Deng X., kuo C.Y., Roesler C., Yi Y. Validation of Jason-2 altimeter data by waveform retracking over California coastal ocean. Marine Geodesy, 33(sup1): 304-316, 2010.
922
923
[36] Fenoglio-Marc L., Dinardo S., Scharroo R., Roland A., Dutour Sikiric M., Lucas B., Becker M., Benveniste J., Weiss R. The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Advances in Spach Research, 55(11): 2641-2656, 2015.
924

Return to Li et al 2020b.

Back to Top