P. Biver. Modeling Transport in a Double Porosity Medium: An Alternative Approach. DOI 10.1007/978-94-011-3694-5_3
P. de Sampaio. A Petrov-Galerkin/modified operator formulation for convection-diffusion problems. Int. J. Numer. Meth. Engng. 30(2) DOI 10.1002/nme.1620300208
D. Winterscheidt, K. Surana. p-version least-squares finite element formulation for convection-diffusion problems. Int. J. Numer. Meth. Engng. 36(1) DOI 10.1002/nme.1620360107
M. Goldschmit, E. Dvorkin. On the solution of the steady convection—diffusion equation using quadratic elements: a generalized galerkin technique also reliable with distorted meshes. Engineering Computations 11(6) DOI 10.1108/02644409410799425
K. Bowers, T. Carlson, J. Lund. Advection-diffusion equations: Temporal sinc methods. Numer. Methods Partial Differential Eq. 11(4) DOI 10.1002/num.1690110408
H. ANTÚNEZ, S. IDELSOHN. USING PSEUDO‐CONCENTRATIONS IN THE ANALYSIS OF TRANSIENT FORMING PROCESSES. Engineering Computations 9(5) DOI 10.1108/eb023883
L. Xikui, W. Wenhua. Characteristic Galerkin method for convection-diffusion equations and implicit algorithm using precise integration. Acta Mech Sinica 15(4) DOI 10.1007/bf02487935