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Summary. In simulations of weak-surface-tension multiphase flows, the fine-scale of multi-
phase structures can be under-resolved due to finite size of the numerical grid. These limits can
induce quasi-surface-tension effects, known as numerical surface tension, which are particularly
pronounced in geometric Volume-of-Fluid (gVoF) methods [1, 2]. This study systematically
characterizes this effect with a specific focus on the conservative Volume-of-Fluid (cVoF) ap-
proach [3]. Several pure passive advection cases are investigated to identify the mechanism,
while also exploring the influence of different interface normal reconstruction schemes.

The discontinuities in the reconstructed interface between adjacent grid cell faces are found to
drive numerical surface tension, as demonstrated by a series of pure advection test-cases. Errors
in the surface normal direction reconstruction scheme are shown to exacerbate this effect, as
shown in the simple case of reconstructing a circular droplet.

Like physical surface tension, the numerical surface tension effect scales linearly with grid-
based curvature. The time scale of the numerical surface tension effect is governed by a diffusion
mechanism rather than wave propagation as in the case of physical surface tension. Nevertheless,
the final effect on the flow is similar for both. The kinematics of interface structures smaller
than O(10) grid lengths is found to be most influenced by the numerical surface tension.

1 INTRODUCTION

Multiphase flows ubiquitously occur in marine environments, such as air entrainment in
breaking waves [4], and in everyday engineering applications like ink-spray technology [5]. To
understand the phenomena, numerical simulations are widely applied to analyze interface dy-
namics and statistics.

Among several multiphase numerical schemes, geometric Volume of Fluid (gVoF) method is
particularly often chosen for its capability to preserve the interface sharpness below the grid size.
This method reconstructs surfaces in each interfacial cell for advecting the volume fraction. The
sub-grid interface shape can vary in complexity from low to high order: a vertical/horizontal
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plane (Simple Line Interface Calculation, SLIC) [6], a plane (Piecewise Linear Interface Calcu-
lation, PLIC) [7], a dog-eared plane (Bilinear Interface Calculation, BLIC) [8], or a paraboloid
(Piecewise Parabolic Interface Calculation, PPIC) [9]. To balance computational cost and ac-
curacy, PLIC is typically chosen. Furthermore, to conserve the mass, this study incorporates
conservative Volume-of-Fluid (cVoF) [3] approach, an operator-splitting PLIC-gVoF.

Applying PLIC-gVoF sometimes results in numerical surface tension. Rudman [10] observed
shape changes when purely advecting droplets with different normal estimation schemes. Re-
search on thin film dynamics has also revealed another aspect of numerical surface tension:
failure to resolve the dynamics of multiphase structures smaller than grid size [1, 2]. For exam-
ple, when the liquid film thickness is thinner than the grid size, none of the existing interface
reconstruction schemes can accurately capture the interface, leading to artificial rupture of the
thin film. These numerical artifacts resemble those arising due to the action of physical surface
tension. Thus, the effect is called numerical surface tension.

The behavior of PLIC is significantly influenced by the estimation of the normal vector, as
the interface topology is fully determined by the plane direction and volume fraction. Several
schemes have been presented in the literature [3, 7, 11, 12, 13], the differences between which
will be investigated in this study.

This research focuses on shape change effect due to pure advection, similarly to the work
of [10]. This is done to allow fundamental observations to be made about the numerical surface
tension effects in the absence of other factors typically affecting complete fluid flow simula-
tions. In particular, this study investigate several attributes of the numerical surface tension –
mechanism, effects, time and length scales.

2 CONSERVATIVE VOLUME-OF-FLUID METHOD

Only the multiphase advection equation is utilised in the present study as the multiphase
structures are purely advected [10]. VoF method uses a color function, c(x), to indicate different
fluid regions: 1 for “dark” fluid while 0 for “light” fluid. Assuming the two fluids are immiscible,
the color function follows the material transportation law to be written:

Dc

Dt
= ∂c

∂t
+ u · ∇c = 0, (1)

where u is the flow velocity vector. The gradient of c is not defined at the interface, but
integrating the differential equation over a cell eases this issue:

∂

∂t

∫
Ω

c dV +
∮

∂Ω
c u · n̂ dS =

∫
Ω

c ∇ · u dV. (2)

In discrete calculations, the water volume fraction (f) of a computational cell Ω is defined as

f =
∫

Ω c dV∫
Ω dV

. (3)

Thus, the integral form becomes:

∆Ω∂f

∂t
+ F =

∫
Ω

c ∇ · u dV, (4)
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Figure 1: Example of geometric advection for a 1D case. Dark fluid occupies the blue area. The
shaded green rectangles, also known as advection sweep, are fluid going to be advected to the
next cell after a time step of ∆t. ul and ur denote the velocities upon the corresponding faces.

where ∆Ω is the cell volume and F is the net water volume flux from all faces.
However, to avoid repeated advection, the transport equation is split by direction and se-

quentially integrated to the next time step:

∆Ω
(
f (∗) − f (n)

)
= ∆t

(
Fx + cc

∂u

∂x
∆Ω

)
;

∆Ω
(
f (∗∗) − f (∗)

)
= ∆t

(
Fy + cc

∂v

∂y
∆Ω

)
;

∆Ω
(
f (n+1) − f (∗∗)

)
= ∆t

(
Fz + cc

∂w

∂z
∆Ω

)
.

(5)

Here, Fd is the flux on the corresponding faces of direction d, and coefficient of dilation term
reads:

cc =
{

1 if f (n) > 0.5;
0 if f (n) ≤ 0.5.

(6)

The dilation term is preserved to account for and redistribute extra flux across directions.
During each directional advection step, piecewise-linear interfaces are reconstructed, and an

upwind donor-acceptor scheme determines the advected part, as shown in Fig. 1. The dark fluid
(blue part), covered by the advection volume (green shade), will be advected from the donor
cell to the acceptor cell. The advection volume is a rectangular sweep with a width of velocity
times the time step.

In the reconstruction step, the interface normal vectors are estimated to describe the interface
shape. This study focuses on four estimation schemes: Pure Central Difference (PCD), Column
Difference (CD), Weymouth-Yue (WY, [3]), and Mixed Youngs-Centered (MYC, [11]). PCD
and CD use finite difference calculations as shown in Fig. 2, while WY and MYC are height-
function-based calculations with several selection criteria.

3 ADVECTION TEST CASE

Rudman [10] advected several shapes in 2D with unidirectional velocity fields on a uniform
square grid. His study found that when the velocity field deviated from the mesh directions, by
approximately 26.5◦ in his case, it caused the most severe shape distortion.

To facilitate more fundamental observations and develop simple models, a simpler test case
called “Pac-Man” is investigated here, where a solid circular multiphase structure is advected
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(a) Pure central difference. (b) Column difference.

Figure 2: Estimation of normal vector value. The magnitude of x and y normal vector compo-
nents are determined by the central difference between volume fraction inside purple and green
areas, respectively.

(a) Pac-Man. (b) Shaking.

Figure 3: Overlapped reconstructed interfaces whenever the droplet finishes one domain cycle
in Pac-Man test case or returns to original position for shaking test case. Time evolves from
blue to yellow to red. The normal estimation scheme here is PCD.
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along the diagonal direction (45◦) inside a periodic domain. It is noteworthy that, again, only
the volume fraction advection equation is used, with no dynamics nor physical surface tension
included.

However, tracking intricate shape changes in the Pac-Man test is challenging as the shape is
not fixed to one location. Therefore, a new test case, called “shaking,” is introduced, where the
velocity direction alternates between 45◦ and 225◦ at each time step. This test case brings the
droplet back to its original position every other time step, rather than seeing it continuously
move as in the Pac-Man case.

Fig. 3 verifies that shaking test case behave similarly to Pac-Man one regarding shape changes.
Both converge to a similar shape, apart from the shape drift in the Pac-Man test due to a constant
bias in one direction. These two test cases are also conceptually equivalent to a sufficient extent.
Whenever a shape is advected by the length of a grid cell in the Pac-Man test, it can be
artificially shifted back by one grid cell without altering any interface topology. Advecting a
cell and shifting it back essentially constitutes shaking with an amplitude of half a grid size,
justifying the shaking test case.

The following sections will thus be based on the results of the shaking test cases. Unless
explicitly stated otherwise, the Courant–Friedrichs–Lewy (CFL) number is chosen as:

CFL = |u|∆t

∆x
= |v|∆t

∆x
= 1

12 , (7)

where u and v are velocities in x, y direction, while ∆x and ∆t represent the spatial and temporal
discretization sizes.

4 CLUES OF NUMERICAL SURFACE TENSION

Two noticeable phenomena emerge from the test cases, as depicted in Fig. 4:

1. Droplet converges to a distinct shape, depending on the chosen normal estimation scheme.

2. Discontinuities of the reconstructed interfaces at cell faces tend to diminish or resolve.

These observations qualitatively resemble physical surface tension, which smooths out disconti-
nuities and makes continuous fluid structures adopt particular shapes, such as a circle for the
common case of uniform surface tension.

The first observation, where a shape is influenced by the normal estimation scheme, could
be explained through a static reconstruction test case. A quarter circle is reconstructed via
several different normal estimation schemes, and comparing their sub-grid interface orientations
with theoretical values yiedls Fig. 5. This comparison determines the converged shape seen in
Fig. 4. For instance, the PCD scheme biases normal estimation towards 45◦, resulting in a
final shape characterized by inclined straight lines. This underscores the importance of selecting
appropriate normal estimation schemes to mimic uniform-surface-tension flow.

The second observation, concerning diminishing discontinuities, relates to the mechanism
driving numerical surface tension. As discontinuities shrink, akin to a rubber band, there is an
opportunity to reshape the multiphase structure until it matches the stable shape determined
by the normal reconstruction scheme mentioned earlier. Further investigation into background
mechanisms and conceptual models will be conducted to analyze time and length scales in the
subsequent section.
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(a) PCD. (b) CD.

(c) WY. (d) MYC.

Figure 4: Overlapped shapes of different normal estimation schemes across simulation time.
Total normalized absolute advection distance is |u|t/∆x = 30

√
2. PCD: pure central difference;

CD: column difference; WY: Weymouth-Yue; MYC: mixed Youngs-Centered.
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Figure 5: Comparison of normal estimation schemes reconstructing a circular droplet. Ideal
behavior is denotes as the diagonal line: Position = Reconstruction.

Figure 6: Demonstrates how discontinuities disappear under the shaking test case. (a) and (b)
shows two consecutive time steps, while (c) demonstrates the net effect from those two time
steps together.

5 BACKGROUND MECHANISM & TIME AND LENGTH SCALE ANALYSIS

The previously observed discontinuities drive the numerical surface tension. A simple one-
dimensional shaking thought experiment (Fig. 6) illustrates that these discontinuities tend to
smooth themselves out. After two consecutive time steps in the shaking case, a net flux is
generated from higher to lower water levels, proportionally to the length of the discontinuity.
This quantifies the strength and length scale of numerical surface tension, where the driving
effect is directly proportional to the discontinuity length.

Further characterization of the relationship between discontinuity and length scale could be
illustrated by static reconstruction of a circular droplet in different resolutions (Fig. 7). This
analysis shows that the discontinuity length per unit circumference increases linearly with grid-
based curvature, aligning with physical surface tension length scales.

For time scale analysis, a pure horizontal interface reconstruction is further assumed in a
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Figure 7: Discontinuity length per circumference length versus grid-based radius under the
reconstruction of MYC. The dots denote discontinuity length and the dashed line represents
linear dependency, power of one.

Figure 8: Net flux (purple shaded area) between neighborhood cells with discontinuity δl after
two consecutive time steps, 2∆t. The periodic boundaries at both sides are imposed.
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Figure 9: Temporal convergence plot of discontinuity length of Fig. 8. The ideal slope of C = 2
is indicated as the dashed line.

Figure 10: Quantifying length scale and time scale of different wavelength (λ). The left panel
shows the convergence of the total discontinuity length with different wavelength, signified by
different colors. The right panel extracts C in the form of δl ∼ exp(−C|u|t/∆x) from different
wavelength and plots them in log-log plot. The dashed line is C ∼ λ−2.
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one-dimensional shaking thought experiment. This setup includes periodic boundary conditions
with a wave of wavelength 2∆x (Fig. 8). Assuming mild interface changes across time steps, the
evolution of each discontinuity after two consecutive time steps follows:

δl(i+2) = δl(i) − 4δl(i)
|u|∆t

∆x
. (8)

This evolution resembles a differential equation:

dδl

dt
= −2 |u|

∆x
δl, (9)

with the solution:

δl ∼ e−2|u|t/∆x. (10)

The exponential nature of the derived model and coefficient 2 in exponent is confirmed by the
numerical simulation (Fig. 9).

In order to generalize the result to different length scale, wave length (λ) here, three consec-
utive grid cells (i − 1, i, i + 1) are examined in detail. The volume fraction of the central cell
(fi) after the first time step with positive velocity is:

f
(n+1)
i − f

(n)
i

∆t
= −|u|

f
(n)
i − f

(n)
i−1

∆x
. (11)

After the second time step with negative velocity:

f
(n+2)
i − f

(n+1)
i

∆t
= +|u|

f
(n+1)
i+1 − f

(n+1)
i

∆x
. (12)

Assuming mild changes in volume fraction across time steps, the two equations sum yields:

f
(n+2)
i − f

(n)
i

2∆t
≈ |u|∆x

2
fi+1 − 2fi + fi−1

∆x2 =⇒ ∂f

∂t
= |u|∆x

2
∂2f

∂x2 . (13)

Thus, the solution resembles

f(x, t; k) ∼ e−0.5(k∆x)2|u|t/∆x sin(kx), (14)

where k∆x is the grid-based wavenumber, defined as 2π∆x/λ.
The discontinuity equation (Eq. 9) can be recovered from Eq. 13. The discontinuity at x0 is

the difference between volume fractions at x ± ∆x/2:

δl = ∆x · f

(
x0 + ∆x

2

)
− ∆x · f

(
x0 − ∆x

2

)
≈ ∂f

∂x
∆x2. (15)

Taking the partial derivative of Eq. 13 in x and assuming the spatial part of the solution reads
cos(kx) (cf. Eq. 14) yields

∂δl

∂t
= |u|

2
∂2δl

∂x2 = − |u|
2∆x

(k∆x)2δl. (16)

10



T.-Y. Huang, A. K. Lidtke, K. L. Hendrickson, T. J. C. van Terwisga, and G. D. Weymouth

The developed equation is successfully verified in Fig. 10, where the convergence speed of total
discontinuity is plotted against the wavelength, matching the speed predicted by (k∆x)2.

From the analysis, the relationship between length (L) and time (T ) scales are established:

T ∼ ∆x

(k∆x)2|u|
=⇒ |u|T

∆x
∼

( L
∆x

)2
, (17)

which means time scale depends on square of the grid-based length scale (L/∆x). However,
the time scale associated with physical surface tension, derived from capillary water waves [14],
differs:

ω2 = η

ρ
k3 =⇒ T ∼ L1.5, (18)

where η and ρ denote the surface tension coefficient and density, respectively. The time scales
deviate as numerical surface tension is a diffusion mechanism without inertial effect. Meanwhile,
scales of physical surface tension come from the balance between inertial forces and cohesion
effects. Further refinement of the model or inclusion of relevant physics in a more delicate test
case is needed to adequately compare the time scales.

6 CONCLUSION AND OUTLOOK

This study reveals that the gVoF method exhibits numerical surface tension due to discontinu-
ities in reconstructed interfaces. This results in a characteristic converged shape after advection
determined by the normal estimation scheme. This effect scales linearly with grid-based curva-
ture, akin to physical surface tension. However, its time scale is proportional to the square of
the length scale, contrasting with the 1.5 power dependency in physical surface tension.

While the tests are performed with the operator-split PLIC gVoF method, these findings
suggest that any similar method, even an unsplit advection scheme, involving interface disconti-
nuities or frequent normal reconstruction, may suffer from numerical surface tension, albeit up
to differing time scales. For instance, schemes like PPIC may still exhibit discontinuities, and
BLIC suffers from reconstruction biases and therefore will experience numerical surface tension
effects but to a milder extent than PLIC.

Numerical surface tension becomes significant when multiphase structures are not resolved
well. This effect might happen in simulations with low to negligible physical surface tension.
However, accurately quantifying numerical surface tension may allow one to emulate physical
surface tension at grid length scales in simulations with high Weber numbers such that similar
statistic could be recovered without including physical surface tension. This idea is qualitatively
similar to using grid-induced numerical dissipation in implicit LES.
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