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Summary. Implicit Large Eddy Simulation (iLES) is popular for modeling high-Reynolds-
number turbulent flows due to its simplicity and efficiency. High-resolution numerical schemes
in iLES mimic subgrid-scale models by using numerical dissipation/dispersion errors. Balancing
these errors is crucial to avoid unphysical energy build-up or excessive diffusion, especially in
compressible flows with discontinuities and smooth features. This work introduces an adaptive
dissipation/dispersion adjustment (ADDA) algorithm for the CWENOZ scheme in a finite-
volume framework for unstructured meshes, tested in subsonic, transonic, and supersonic regimes.
The ADDA algorithm enhances robustness and scale-resolving capabilities, yielding efficient and
physically meaningful results, and is available in the open-source UCNS3D CFD solver.

1 INTRODUCTION

Turbulent flows with high Reynolds number feature a wide range of spatial and temporal
scales that present significant challenges for their numerical simulation. The smaller flow scales
are often too fine for the grid resolution of numerical methods. This mismatch leads to under-
resolved flows, where small scales can’t be accurately captured, affecting the overall dynamics of
the flow. Direct numerical simulation (DNS) of such flows is computationally impractical, even
with advanced supercomputers. Instead, Large Eddy Simulation (LES) methods are used, which
resolve larger scales and model the effects of smaller, unresolved scales with subgrid-scale (SGS)
models. Implicit LES (iLES) incorporates the effects of unresolved scales implicitly through
the inherent numerical dissipation of high-resolution, non-oscillatory methods, eliminating the
need for explicit SGS models. iLES is widely adopted in numerical frameworks like finite-
volume (FV), finite-element (FE), finite-difference (FD), and various high-order schemes such
as WENO, MUSCL, and TVD [1–7]. High-resolution schemes naturally introduce numerical
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dissipation that mimics SGS models, and they should balance low numerical dissipation and
dispersion, avoiding unphysical energy build-up in high modes, especially in under-resolved
grids. This balance ensures that the energy transfer from larger to smaller scales, truncated in
practical computations, is effectively dissipated at the smallest scales present. This work focuses
on adapting numerical methods to provide the right amount of dissipation for iLES simulations,
minimizing unphysical energy build-up in high modes. Various approaches address this [1,
3, 8–14], such as polynomial de-aliasing techniques, adaptive dissipation blending, and multi-
objective optimization. Automatic dissipation adjustment methods adjust dissipation based on
energy ratios, maintaining stability even in compressible flows with potential shock waves. We
develop an a priori approach for adaptively adjusting dissipation and dispersion (ADDA) in
high-order non-oscillatory methods for unstructured meshes, suitable for practical engineering
problems. We employ well established test problems, such as the Taylor-Green vortex and the
turbulent flow past the SD7003 airfoil to demonstrate the performance of the new framework.
The chosen numerical scheme is the high-order CWENOZ method [2] , implemented in the
UCNS3D CFD code [15] using Fortran 2008, MPI, and OpenMP [16].

2 NUMERICAL FRAMEWORK

2.1 Governing Equations

The compressible Navier-Stokes equations are considered, written in conservative form as:

∂U(x, t)

∂t
+∇ · (F⃗c(U)− F⃗v(U,∇U)) = 0, (1)

where U is the vector of the conserved variables, F⃗c and F⃗v are the inviscid and viscous flux
vectors, respectively, as

U =


ρ
ρu
ρv
ρw
E

 , F⃗c =


ρun

ρuun + nxp
ρvun + nyp
ρwun + nzp
un(E + p)

 , F⃗v =


0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΘx + nyΘy + nzΘz

 , (2)

where ρ is the density; u, v, w are the velocity components in x, y and z Cartesian coordinates,
respectively, and un is the velocity normal to the bounded surface area, defined by un = nxu+
nyv + nzw. The total energy per unit mass is given by E = p/ (γ − 1) + (1/2)ρ(u2 + v2 + w2),
where p is the pressure, γ = 1.4 is the ratio of specific heats for air at normal atmospheric
conditions, and the Sutherland’s law is assumed. The viscous stresses and heat conduction, Θ,
is given by:

Θx = uτxx + vτxy + wτxz +
µl

Pr

γ

(γ − 1)

∂T

∂x
,

Θy = uτyx + vτyy + wτyz +
µl

Pr

γ

(γ − 1)

∂T

∂y
,

Θz = uτzz + vτzy + wτzz +
µl

Pr

γ

(γ − 1)

∂T

∂z
.

(3)
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The viscous stress tensor τij is defined by is

τij = µl

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
, (4)

where δij is the Kronecker delta and the subscripts i, j, k refer to the Cartesian coordinate
components x = (x, y, z).

2.2 CWENOZ Discretisation

We discretise the Navier-Stokes on a 3D domain Ω consisting of any combination of conforming
tetrahedral, hexahedral, prism or pyramids in 3D, by integrating Eq. (1) over each mesh element
i using a high-order explicit finite-volume formulation the following equation is obtained:

dUi

dt
=− 1

|Vi|

Nf∑
l=1

Nqp∑
α=1

F⃗cl

(
Un

l,L(xl,α, t),U
n
l,R(xl,α, t)

)
ωα|Sl|

+
1

|Vi|

Nf∑
l=1

Nqp∑
α=1

F⃗vl

(
Un

l,L(xl,α, t),U
n
l,R(xl,α, t),∇Un

l,L(xl,α, t),∇Un
l,R(xl,α, t)

)
ωα|Sl|,

(5)

where Ui are the volume averaged conserved variables

Ui =
1

|Vi|

ˆ
Vi

U(x, y, z) dV, (6)

and F⃗cl and F⃗vl are the numerical flux function, Nqp is the number of quadrature points, Nf is
the number of faces, , |Sl| is the surface area , and Un

l,L(xl,α, t) and Un
l,R(xl,α, t) are the boundary

extrapolated reconstructed solutions for the left and right side of the interface, ∇Un
l,L(xl,α, t)

and ∇Un
l,R(xl,α, t) are the the gradients for the left and right side of the interface; while α

corresponds to different Gaussian integration points xα and weights ωα over each face. We
employ the CWENOZ scheme of Tsoutsanis and Dumbser [2], and only the key components are
presented in this work. The CWENOZ scheme combines an optimal (high-order) popt polynomial
from the central stencil with lower-order polynomials from directional stencils.The definition of
an optimal polynomial given by:

popt(x, y, z) =

st∑
s=1

λsps(z, y, z), (7)

where s is the stencil index, with s = 1 being the central, s = (2, 3, .., st) being the directional,
st being the total number of stencils, and λs being the linear coefficient for each stencil, whose
sum is equal to 1. The p1 polynomial is computed by subtracting the lower-order polynomials
from the optimum polynomial as follows:

p1(x, y, z) =
1

λ1

(
popt(x, y, z)−

st∑
s=2

λsps(x, y, z)

)
. (8)
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The CWENOZ reconstruction polynomial is a non-linear combination of all the polynomials as
follows:

p(x, y, z)cwenoz =

st∑
s=1

ωsps(x, y, z) ≡ U0 +

K∑
k=1

ãkϕk(x, y, z), (9)

where ωs corresponds to the non-linear weights assigned to each reconstruction polynomial, and
ãk are the reconstructed degrees of freedom; and the non-linear weight ωs is defined as: The
non-linear weights are now defined as:

ωs =
ω̃s

st∑
s=1

ω̃s

where ω̃s = λs

(
1 +

(
τ

ϵ+ SIs

)b
)
. (10)

With τ being the universal oscillation indicator and taken as the absolute difference between
the smoothness indicators as follows:

τ =


st∑
s=2

|SIs − SI1|

st − 1

 . (11)

The linear weight of the central stencil is assigned an arbitrary large value and the directional
stencils an equal value, and then their values are normalised with their sum being equal to unitu.
For the definitions of smoothness indicator the reader is referred to [2], and the reader is referred
to [?, 17–26] and references therein regarding the implementation.

2.3 Time Advancement & Fluxes

We employ the explicit 4th-order Strong-Stability-Preserving (SSP) Runge-Kutta of Spiteri
and Ruuth [27],[27] or the widely used dual-time stepping strategy [28] in an implicit matrix-free
lower-upper symmetric Gauss-Seidel (LU-SGS) fashion [29, 30] using the Rusanov flux [31] as
detailed in implementation [15] and references therein. For the inviscid fluxes we employ the Roe
Riemann solver [32] and for the viscous fluxes, the gradients are computed using a constrained
least-square reconstruction for the boundary condition enforcement including penalty terms as
detailed in [15,21] and references therein.

2.4 ADDA

From of the flow-chart of the ADDA-augmented UCNS3D code as shown in Fig. 1 at every
physical time step for every cell three steps are taken. Firstly we measure the Energy Ratio
as defined in [1], to establish if the field of that cell is well-resolved or under-resolved, and
in turn dictates if this cell requires more or less dissipation. The 2nd step is involved the
adaptation of CWENOZ reconstruction by adjusting the linear weight (λ1) of the central high-
order stencil. The third step involves the flux adaptation be adjusting the dissipation (gradual
increase, gradual decrease, or return to default value) through a flux dissipation control term
(di) that is multiplied with each of the wave strengths of the Roe Riemann solver, depending
on the value of the non-linear CWENOZ weight for the density and pressure, to ensure that the
non-oscillatory properties of the framework are maintained. Finally, the fluxes are computed,
and the solution advanced in time.
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Figure 1: ADDA flow chart

3 RESULTS

3.1 Taylor-Green Vortex

The iLES of the 3D inviscid subsonic Taylor-Green vortex test problem is employed for
assessing the performance of the developed schemes, as it is widely used by the community
for this reason [1, 5, 33–41] and therefore there is a wealth of DNS, LES, iLES computational
data from the literature to compare against, and the readers are referred to the work of [33] for
the initial conditions for this flow problem. We are interested in coarse grid resolutions, being
more representative of the operating conditions of high-order methods, to better understand any
benefits that the new ADDA technique can offer for reproducing the transition to turbulence in
these situations. The computational domain is defined as Ω = [0, 2π]3 with periodic boundary
conditions and the initial condition corresponds to an initial Mach number M ≈ 0.08, with
wavenumber k = 2π/λ = 1. Simulations were carried out on hexahedral meshes of 643 and
1283. For the present Taylor-Green vortex flow test problem we employ the CWENOZ 5th-
order scheme and the 4th-order Runge-Kutta SSP with a CFL of 1.4, with the Roe Riemann
solver. We are assess the performance of the newly introduced framework by examining the
kinetic energy temporal evolution, dissipation rate, and 3D spectra of the kinetic energy after
the dissipation peak (t = 10). It can be noticed from Fig. 2 that the ADDA variants provide
a better agreement with DNS results of Brachet [33] and the theoretical Kolmogorov’s slope
at both resolutions although several cells were required to increased their dissipation term as
shown in Fig. 3.

5
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Figure 2: Kinetic energy (left), kinetic energy dissipation rate(middle), and kinetic energy
spectra at t=10 for the inviscid Taylor Green vortex using various schemes.

Figure 3: Cells identified for increased dissipation for the Taylor-Green vortex flow problem at
different instants (top), and iso-surfaces of Q-criterion coloured by kinetic energy (bottom) using
a CWENOZ5-ADDA scheme.

3.2 SD7003

We apply the developed framework to the turbulent flow over the SD7003 wing at Mach
number of M = 0.2, at Reynolds number Re = 60, 000 and angle of attack of α = 8◦. This
benchmark case has been widely used to assess the performance of LES methods [37,42–45]. For
this purpose we employ the CWENOZ4-ADDA scheme on a hybrid unstructured mesh consisting
of 5.3 million cells as illustrated in Fig. 4. The domain extends 50c upstream and downstream,
and 0.2c in the span-wise direction, where c is the chord length. The grid resolution at the
boundary layer region gives a (y+ = 0.87,x+ = 3.1,z+ = 5.4) with no-slip boundary conditions at
the surface of the aerofoil, free-stream conditions at the farfield and periodic boundary conditions
in the span-wise direction. All the schemes employ the low-Mach number correction [45], the
Roe Riemann solver [32] and the 2nd-order implicit dual-time stepping available in UCNS3D [15]
with a timestep size of ∆t = tc

500 with the convection time being given by tc = c/U∞. The

6
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simulations were run for t = 20tc to develop the flow, and an additional 20tc for time averaging.
It can be noticed from Fig. 5 and Fig. 6 that the ADDA variant provides the correct predictions,
and is in good agreement with previous computational studies in terms of lift, drag, separation
and reattachment locations as seen in Table 1. More importantly we notice that the cells in
the laminar region at the wake have been adjusted for reduced dissipation since these are well
resolved regions, while in the transitional region they are tagged for high dissipation.

Figure 4: Unstructured mesh used for the SD7003 airfoil test problem.

Figure 5: Instantaneous iso-surfaces of Q criterion (Q=100) coloured by the non-dimensionalised
velocity magnitude (top) and the ADDA flux dissipation di for the SD7003 airfoil with the
CWENOZ4-ADDA scheme. The LSB is characterised by a low-dissipation di value and a high-
dissipation profile in the turbulent region according to the energy ratio values.

7
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Figure 6: Time-averaged, span-wise averaged contour plots of non-dimensional u-velocity (left)
and turbulent kinetic energy (right) for the SD7003 flow problems with CWENOZ4-ADDA.

Method CL CD xs xr
CWENOZ4-ADDA-mesh 0.927 0.045 0.041 0.270

Frank et al. [43] 0.923 0.045 0.027 0.310
Galbraith & Visbal [46] 0.917 0.044 0.031 0.303

Table 1: Predictions for lift-coefficient CL, drag-coefficient CD, separation position xs, and
reattachment position xr for the SD7003 airfoil test problem and comparison with computational
studies in the literature.

4 CONCLUSIONS

This work developed an adaptive dissipation/dispersion adjustment algorithm within a high-
order finite-volume framework for iLES simulations of compressible turbulent flows. The algorithm
measures the energy ratio to adjust the CWENOZ reconstruction and the dissipation term of the
Roe Riemann solver for each cell at each time step. It was tested on several problems, showing
improved scale-resolving capability and non-oscillatory properties. The algorithm’s versatility
suggests potential applications in other frameworks like DG and hybrid DG-FV.
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