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ABSTRACT

Machine vision is used to detect dense, small rod-end joint bearings in
sliding ball surfaces with little feature information and high variability.
However, this leads to inaccurate identification, affecting production effi-
ciency. This study proposes a deep-learning object-detection algorithm
model that allows the network to retain more semantic information. We
introduced the space-to-depth convolution (SPD-Conv) step-free convo-
lution module to improve the backbone network and developed a multi-
level feature fused SPD (MFSPD) deep feature fusion module to redesign
the neck network to improve the feature extraction ability and detection
accuracy for small targets. Furthermore, we added a small P4 detection
head in the head network (i.e., prior box acquisition on the dataset using
the weighted k-means algorithm), increased the matching degree of the
prior box and feature layer, and accelerated the model convergence. To
improve the confidence propagation clustering (CP-Cluster) analysis algo-
rithm for post-processing, we optimized the prediction box confidence
degree and detection speed. The algorithm performance was evaluated
on homemade, T-LESS, and COCO datasets. The mAP@.5 values of the
target detection algorithm for the homemade and T-LESS datasets were
96.9% and 93.8%, respectively, and the mAP was 55.9% for the COCO
dataset. The experimental results indicate that the algorithm has a high
detection accuracy and good feature extraction ability. Thus, it has con-
siderable advantages for small-object detection and provides a reference
for the detection of small parts.
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1 Introduction

Rod-end joint bearings are indispensable in mechanical equipment, acting analogously to joints
in the human body. Owing to their large variety and minute differences [1], sorting bearings via
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manual detection is inefficient and has low accuracy. Therefore, machine vision and robotics have
been introduced in object detection tasks [2]. Machine-vision-guided robotics can significantly increase
detection accuracy and efficiency. However, in CNC machine tool production lines employing a
hybrid manufacturing approach with varying models and sizes, traditional vision-based detection
of small bearings remains challenging due to the complex industrial environment. Issues such as
surface reflections, disordered stacking, and the high variability of the sliding ball surfaces often result
in insufficient feature information. To overcome these challenges, we have employed deep learning
techniques. The small size of the rod-end bearings is illustrated in Fig. 1.

Figure 1: Small rod-end joint bearing

Current object detection algorithms based on deep learning can be broadly categorized into two-
stage [3–6] and one-stage [7–10] approaches. Kim et al. [11] demonstrated that integrating super-
resolution (SR) with object detection significantly improves accuracy for small objects by enhancing
image resolution, thereby reducing false detections. Wahyudi et al. [12] emphasized the effectiveness
of strategies such as multiscale feature fusion and contextual information enhancement in addressing
the limitations of small-object detection. Furthermore, Park et al. [13] introduced a multimodal data
fusion approach that mitigates the challenges of noise and low resolution, further improving detection
performance in complex environments. Despite these advancements, several limitations persist in small
object detection:

1. Insufficient feature representation: Existing deep learning models struggle with inadequate
feature information for small objects due to limited spatial resolution and multiple downsampling
operations [14,15]. The large receptive fields and inherent low-resolution characteristics of these
networks further exacerbate the challenge of extracting discriminative features for small objects,
leading to increased false positives and false negatives.

2. Suboptimal utilization of contextual information: While contextual cues are crucial for small
object detection, current methods often fall short in effectively integrating multi-scale feature fusion
and contextual information enhancement [16,17]. This deficiency hinders the model’s ability to
comprehend small objects within their environmental context, particularly in complex scenes or under
occlusion.
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3. Limitations of Non-Maximum Suppression for dense small objects: Conventional Non-
Maximum Suppression (NMS) algorithms face challenges when processing densely clustered small
objects. The fixed IoU threshold in standard NMS leads to suboptimal performance in scenarios
with tightly packed small targets [18,19]. This constraint results in decreased recall rates and reduced
localization accuracy, especially in complex scenes where small objects are in close proximity or
partially occlude each other.

To address these limitations and achieve the required detection accuracy for small rod-end joint
bearings, we propose several improvements to the existing object detection frameworks. Our approach
focuses on enhancing feature extraction capabilities, optimizing feature fusion, and refining post-
processing techniques.

Among the current state-of-the-art object detection algorithms, the YOLO series has shown
promising results [20]. While YOLOv6 [21] and YOLOv7 [22] demonstrate superior detection accuracy
and model performance compared to YOLOv5, they incur higher computational costs in terms of
floating point operations (FLOPs) and parameter counts. In practical applications, particularly for
small object detection tasks, the YOLOv5 architecture offers a favorable balance between performance
and efficiency. YOLOv5, an improved version of YOLOv4 [23], exhibits significantly higher detection
speed and accuracy [24], while providing models with various trade-off options for accuracy and speed.

Building upon these considerations, we based our study on YOLOv5 and proposed the SCP-
YOLOv5 object detection algorithm. Our approach incorporates enhanced feature fusion modules and
an improved confidence propagation clustering algorithm to address the aforementioned limitations of
small object detection. The detailed improvements and methodology of our proposed SCP-YOLOv5
algorithm are presented in Section 2.

To validate the effectiveness of our proposed method, we developed a specialized rod-end joint
bearing dataset and evaluated the algorithm’s performance using this custom dataset along with the
established T-LESS and COCO benchmarks.

2 Methods

The production and classification of rod-end bearings involve complex situations, such as stacking
and occlusion, resulting in insufficient feature information. SCP-YOLOv5 addresses the aforemen-
tioned issues by making multiple improvements to the backbone, neck, and head to enhance feature
extraction and strengthen representation capability. In the backbone, more feature map outputs are
added, and the SPD-Conv [25] module is introduced to improve the network structure and feature
extraction capabilities. In the neck, the MFSPD module based on SPD-Conv is proposed to redesign
the structure for better retention of the fused feature information. In the head, the P4 detection head is
added, and weighted k-means [26] clustering is utilized on the rod-end bearing data to obtain suitable
anchors, increasing the detection accuracy and convergence speed for small rod-end bearings. Finally,
the confidence propagation clustering (CP-Cluster) algorithm [27] is further enhanced in the post-
processing stage. This improvement effectively addresses the limitations of traditional NMS methods,
particularly in mitigating the issue of detection degradation caused by excessive bounding box
overlap. Through these improvements, SCP-YOLOv5 solves problems in rod-end bearing detection
and enhances the detection performance. This strengthens the detection and classification capabilities
for small targets.
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2.1 Backbone Design
Existing CNN module architectures use strided convolutions or pooling layers in series or parallel,

which cause loss of fine-grained texture information and less efficient feature learning for rod-end joint
bearings—particularly small ones. To address these problems, we introduced an SPD-Conv module
into the backbone. The module contains a space-to-depth layer and non-strided convolution layer.
The space-to-depth layer uses an unprocessed image transformation technique [28] to split the rod-end
joint bearing feature maps from spatial dimensions to concatenated channel dimensions, as shown in
Fig. 2.

Figure 2: SPD-Conv module structure

The backbone is based on the improved CSPDarknet53 with an additional 160 × 160 × 128 feature
map output for subsequent small-object detection. All strided convolution layers are replaced with
SPD-Conv modules. The improved architecture outputs four feature maps with scales of 160 × 160 ×
128, 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024. They are then input to the neck for further
fusion and enhancement, as shown in Fig. 3.

2.2 Neck Design
For accurately detecting small rod-end bearings, a P4 detection head was added. The increased

depth of the neck provides support for the changes in the head, while the increased depth raises the
risk of long-term memorization deficiency. To retain more feature information and enhance the feature
intensity of small rod-end bearings, the module had to be able to retain more information and fuse
features to increase the feature value intensity for each dimension to contain more feature information.
According to this concept, a deep-feature fusion module called the MFSPD based on the SPD module
was developed. Its structure is shown in Fig. 4.
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2.3 Head Design
2.3.1 Detection Head Design

The head of the rod-end bearing has high variability. The same joint bearing can exhibit different
sliding spherical surfaces, as shown in Fig. 5. The head network of YOLOv5 contained only P8,
P16, and P32 detection heads. To solve the problem of reduced detection accuracy caused by the
aforementioned factors and adapt the model to the detection of small rod-end bearings, a P4 detection
head was added to the head to output a 160 × 160 feature map.

Figure 3: Backbone structure: The novel SPD-Conv module and additional feature map output
channel address limitations in existing CNN architectures. This design preserves fine-grained texture
information and enhances feature learning efficiency for rod-end joint bearings, particularly beneficial
for smaller specimens. The structure mitigates information loss typically associated with strided
convolutions or pooling layers, enabling more accurate and detailed analysis across various bearing
sizes

https://www.scipedia.com/public/Peng_et_al_2024 5
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Figure 4: MFSPD structure: The MFSPD, based on the SPD module, is designed to retain more
detailed feature information and intensify feature values across dimensions. This structure mitigates
the risk of long-term memorization deficiency while improving the detection accuracy of small rod-end
bearings through advanced feature fusion and retention techniques

Figure 5: Different angles of sliding spheres

2.3.2 Obtaining Prior Boxes

The dataset anchor had to be determined before training. Suitable anchors can increase the
detection accuracy and accelerate the convergence of the model. The anchor of YOLOv5 was obtained
from the COCO dataset, whereas the rod-end bearing dataset had small sizes and dense and mixed
cluttered stacking, resulting in an anchor mismatch with the dataset. To solve these problems, re-
clustering the annotation boxes and obtaining suitable anchors were necessary. In this study, a weighted
k-means algorithm based on the original k-means algorithm is proposed, in which a weight coefficient
is introduced for each sample. According to the chaotic detection state of the rod-end bearing, the
maximum IoU of the cluster centers is used to evaluate the clustering results. The steps of the algorithm
are as follows:

(1) The clustering center K is adaptively adjusted according to the class label file of the dataset.

(2) The distance from each sample to the center point of the feature map is calculated using the
following formula:

https://www.scipedia.com/public/Peng_et_al_2024 6
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dic =
√(

xi − x̂c

)2 + (
yi − ŷc

)2
, (1)

where xi and yi denote the i horizontal and ordinate samples, respectively, and x̂c and ŷc denote the c
central horizontal and ordinate samples, respectively.

(3) The weight of the cluster center of each sample is considered, and the weight matrix is
constructed. Eq. (2) gives the mean value of the distances between all samples and a central
point a, and Eq. (3) is the weight calculation formula.

da = 1
n

n∑
i=1

dic, (2)

wijc = max
(

0, − dic − dc√
1
n

n∑
i=1

(
dic − dc

)2

)
. (3)

Here, wijc is the weight of the i sample and j cluster center, and c is the feature map center point
corresponding to the cluster center.

(4) The target function D, i.e., the cluster center, is updated:

D = min
n∑

i=1

k∑
j=1

[
1 − wijc

Bi ∩ Cj

Bi ∪ Cj

]
, (4)

where Bi represents the width of the annotation box for sample i, and Cj denotes the preselection box
for the j cluster center.

(5) All the cluster centers are iteratively updated until the cluster-center position is constant.

2.4 Overall Structure of Improved Algorithm
According to the improvements and designs of the aforementioned structures, the overall structure

of the SCP-YOLOv5 algorithm is proposed, as shown in Fig. 6. The input image size is 640 ×
640 × 3 pixels, and the backbone outputs four feature maps of different sizes to the neck for
further enhancement and fusion of features. Finally, the head performs target-tag classification and
prediction-box regression.

A feature pyramid network (FPN) is used in the neck. Upsampling is performed from bottom to
top, and convolution pooling is performed from top to bottom to fuse feature maps at different levels.
This increases the feature value intensity and improves semantic features to enhance the multiscale
target detection capabilities.

In the feature pyramid, deeper feature maps contain higher-level semantic features, whereas
shallower feature maps contain more target location information. Layer 25 fuses 4 scale feature maps
and outputs a 160 × 160 × 128 feature map. The output is divided into two paths: one output is input
to the P4 detection head and the other is used to enhance the target position information from top to
bottom.
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Figure 6: SCP-YOLOv5 structure

2.5 Processing of Detection Results
Considering the defects of the traditional Non-Maximum Suppression (NMS) algorithm, the

prediction box with the highest confidence is not necessarily the best prediction box; sorting is required
before sequential processing. To address such issues, the CP-Cluster algorithm [28] automatically
propagates messages between adjacent prediction boxes. This helps adjust the confidence after multiple
iterations and improve strong confidence areas while reducing weak ones, which allows fully parallel
processing, increasing the algorithm processing speed. Furthermore, rod-end bearings are prone to
situations in which the prediction boxes severely overlap when stacked. Therefore, the IoU is not
suitable as an evaluation metric. The distance IoU (DIoU) [29] was introduced to replace the IoU as a
parameter for evaluating the boundary-box location. When prediction boxes overlap, negative message
passing suppression is more reasonable to ensure accurate prediction of occluded objects in clusters.
When prediction boxes are non-intersecting, the weakest friends can still provide the most precise
movement directions for the strongest friend. The improved scheme combines the two algorithms to
resolve the speed and overlap issues of the NMS algorithm. In Fig. 7, the detection results of the CP-
Cluster algorithm and the improved scheme are shown on the left and right, respectively.

As shown in Fig. 8, all the candidate boxes are first converted into an undirected graph set, and
then the candidate boxes pass positive and negative messages to each other in the graph. Finally,
the discarded candidate boxes are eliminated, and the confidence of the selected candidate boxes is
increased.

https://www.scipedia.com/public/Peng_et_al_2024 8
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Figure 7: Detection results of the CP-Cluster algorithm (left) and the improved scheme (right)

Figure 8: CP-Cluster processing flow diagram

In positive message passing, friend clusters with lower confidence and an IoU higher than a
specific threshold are judged as weaker. The confidence of the strong side is updated according to
the number and confidence of weaker friends, as follows:

Mp (i) ← Q
Q + 1

∗
(

1 − P̂ (bi)
)

∗ max
b̂∈Wbi

P̂
(

b̂
)

, (5)

where wbi denotes the set of weak friends, and P denotes the degree of confidence.

In the spread of negative news, the original ranking from high to low changes to a graph structure,
eliminating the ranking and suppressing it twice. Additionally, an SUP matrix is added to prevent
the prediction box from being repeatedly suppressed by the same prediction box, and the role of
hyperparameter ζ is to limit this phenomenon.

Eq. (6) is suppressed by the strongest friend, and Eq. (7) updates the weak-side confidence.

T(bj ,bi) ← α ∗ P̂
(
bj

)
P̂ (bi)

+ (1 − α) ∗ DIoU
(
bj, bi

)
θ

, (6)

Mn (i) ← P̂ (bi) ∗ DIoU

(
bi, arg max

bj∈Nbj
,SUPj,i≤ζ

T(bj ,bi)

)
, (7)

DIoU
(
bj, bi

) = 1 − IoU + ρ2
(
bj, bi

)
c2

. (8)
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Eq. (8) gives the DIoU evaluation parameters. Here, ρ represents the Euclidean distance between
two center points, and c represents the diagonal of the minimum rectangle that can cover both the
anchor and the target box.

Through iterative cycles, the algorithm converges to the optimal solution. Finally, prediction boxes
with low confidence are filtered out, leaving only the prediction boxes with the highest confidence.

2.6 Experimental Environment and Model Training
2.6.1 Experimental Configuration

Details regarding the configuration of the experimental environment are presented in Table 1.

Table 1: Experimental environment configuration

Software and hardware environment Model parameters

OS Ubuntu 20.04
Development language Python 3.7.0
Deep-learning framework PyTorch 1.8
CUDA CUDA version 11.1
IDE PyCharm2022.1.3+Anaconda3
GPU NVIDIA GeForce RTX3050Ti
CPU AMD Ryzen7 5800h 16G
Data processing tool OpenCV 4.5.1.48
Camera Intel REALSENSE D435I
Data annotation tool LabelImg

2.6.2 Experimental Dataset

Using a D435I camera, 1110 rod-end bearing images with a resolution of 640 × 480 were collected
by calling the SDK. Data annotation was performed using LabelImg with the labels divided into two
categories: SI and SA. The lower left part of Fig. 9a shows the SI inner row rod-end bearing, and
the upper right part shows the SA outer row rod-end bearing. Random fusion data augmentation
was used for the first 1000 images, with one image expanded and augmented to 12 images to create
a dataset containing 13,110 images. The training, validation, and test sets contained 8888, 2222, and
2000 images, respectively. To validate the proposed algorithm, the T-LESS dataset was selected for
target detection, because the nature of the data is similar to that for the actual project. Therefore,
this dataset was used to evaluate the algorithm performance. The COCO dataset was also used
for comparative experiments. Fig. 9b shows sample images from the rod-end bearing dataset (RJB
dataset), and Fig. 9c shows sample images from the T-LESS dataset.

The training was performed using a modified YOLOv5 model. We set both the learning rate
and recurrent learning rate to 0.01, the stochastic gradient descent momentum to 0.937, the weight
decay coefficient to 0.0005, and the batch size to 8. The loss-function curves of the model training and
validation are shown in Fig. 10.

https://www.scipedia.com/public/Peng_et_al_2024 10
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Figure 9: Experimental dataset. (a) Annotation dataset; (b) RJB dataset; (c) T-LESS dataset

Figure 10: Curves of various loss functions during the training process

Here, the vertical coordinate represents the ratio of iterations to epochs, and the horizontal
coordinate represents the loss, where box_loss, obj_loss, and cls_loss represent the means of the
prediction box GIoU Loss, target detection loss, and label classification, respectively, and “train” and
“val” denote the training and validation stages, respectively. Because the rod-end joint bearings were
divided into two label categories, i.e., inner tooth rod-end joint bearing SI and outer tooth rod-end joint
bearing SA, the loss converged rapidly. As the weighted k-means algorithm was used to obtain suitable
anchor boxes, the prediction box and target detection loss converged rapidly, before 100 iterations. The
weighted k-means algorithm significantly affects the SCP-YOLOv5 algorithm model.

3 Results and Discussion
3.1 Analysis of Evaluation Indices and Results

The experimental indices were the precision (P), recall (R), mean average precision (mAP), and
each AP category (mAP). The corresponding formulas are as follows:

https://www.scipedia.com/public/Peng_et_al_2024 11
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Precision = TP
TP + FP

= TP
AllDetections

, (9)

Recall = TP
TP + FN

= TP
AllGroundTruths

, (10)

AP =
∫ 1

0

PRdr, (11)

mAP = 1
n

n∑
i=1

AP. (12)

An ablation experiment was conducted to verify the effectiveness and generalization of the
improved algorithm with the addition of the weighted k-means algorithm, improved CP-Cluster
algorithm, SPD-Conv module, and MF SPD module (only in the neck)—corresponding to Schemes
1 to 4 in Table 2—and each model was compared with the final improved algorithm SCP-YOLOv5.

Table 2: Results of the ablation experiment

Algoritm Weighted
k-means

Improved
CP-Cluster

SPD-Conv MFSPD P (%) R (%) mAP@0.5
(%)

mAP@0.5:
0.95 (%)

FPS
SI SA SI SA

YOLOv5s × × × × 94.6 93.8 90.4 90.1 93.7 89.5 121
Scheme 1 √ × × × 95.3 94.2 91.8 90.8 94.2 90.1 113
Scheme 2 × √ × × 95.1 94.1 90.7 90.5 94.4 89.8 119
Scheme 3 × × √ × 96.7 96.5 93.6 93.4 94.9 91.6 102
Scheme 4 × × × √ 95.2 94.3 90.9 91.3 94.5 90.8 109
SCP YOLOv5 √ √ √ √ 98.8 98.5 96.3 96.3 96.9 92.5 106

The experimental data in Table 2 indicate the following:

(1) The mAP of the SCP-YOLOv5 algorithm reached 96.9% with a threshold of 0.5, and the
detection accuracy reached 92.5% with a threshold between 0.5 and 0.95.

(2) In Scheme 1, the addition of the weighted k-means algorithm increased the precision for SI
and SA by 0.7% and 0.4%, respectively, indicating an improvement in the matching between the prior
boxes and feature map layers in the model.

(3) In Scheme 2, with the addition of the improved CP-Cluster to the YOLOv5s model, all the
metrics increased slightly, and the FPS increased, indicating the efficacy of the parallel processing and
DIoU metrics of the improved algorithm.

(4) The detection accuracy for SA was slightly lower than that for SI because there were fewer
SA samples in the dataset. However, in Scheme 3, adding the SPD-Conv module to the detection
model increased the precision for SI and SA by 2.1% and 2.7%, respectively. Meanwhile, the recall
for SI and SA increased by 3.2% and 3.3%, respectively. This indicates that the SPD-Conv module is
effective for small-object detection, improving the information extraction capabilities of the network
and increasing its detection accuracy.

(5) In Scheme 4, adding the MFSPD module to the neck improved all the metrics, indicating a
significant enhancement in the feature fusion capability of the model neck.

https://www.scipedia.com/public/Peng_et_al_2024 12
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The ablation experiment indicated that the weighted k-means, improved CP-Cluster, SPD-Conv,
and MFSPD modules positively affect the model. Additionally, the combination of all four achieved
the best results, with the precisions for SI and SA reaching 98.8% and 98.5%, respectively.

3.2 Comparison with Different Algorithms
To further verify the performance and advantages of the proposed algorithm, it was compared

with mainstream algorithms, i.e., YOLOv3–YOLOv7, for the rod-end bearing dataset, as shown in
Table 3.

Table 3: Detection performance of different algorithms

Algorithm RJB dataset T-LESS FLOPs (G) Number of parameters (M)

mAP@0.5 (%)

YOLOv3 88.6 80.3 140.7 61.5
YOLOv3-tiny 85.3 76.6 5.6 8.2
YOLOv4 90.7 87.3 119.8 52.5
YOLOv4-tiny 87.2 85.4 6.9 5.9
YOLOv5s 93.7 91.8 16.1 7.1
Proposed 96.9 93.8 25.3 9.5
YOLOv6s 93.5 91.7 43.9 17.3
YOLOv7 98.7 95.3 103.4 36.3
YOLOv7-tiny 94.8 92.2 13.2 6.1

The target and background contrasts of the RJB dataset are evident; therefore, the overall
effect is better than that of the T-LESS dataset. The mAP values of YOLOv3 and YOLOv4 were
80.3% and 87.3% respectively at a threshold above 0.5, which were lower than that of the proposed
algorithm. Additionally, the large numbers of model parameters and FLOPs make deployment on
mobile devices difficult. YOLOv3-tiny and YOLOv4-tiny had fewer parameters and FLOPs than the
proposed algorithm. Their detection speeds were higher, but their accuracies were lower. Compared
with YOLOv6 and YOLOv7, the mAP@0.5 values of the algorithm were 2.1% higher and 1.5% lower,
respectively; however, the number of parameters and FLOPs exceeded those of the proposed algorithm.

As shown in Table 4, the proposed algorithm improves the mAP on the COCO dataset by 1.3%
compared to the previous version. This approaches the performance of YOLOv7 and surpasses other
mainstream algorithms. Therefore, SCP-YOLOv5 demonstrates balanced performance compared to
popular existing methods, with competitive strengths.

To further investigate the significance of differences between the four models (YOLOv5s, SCP-
YOLOv5, YOLOv6s, and YOLOv7), we evaluated their performance using Repeated Measures
ANOVA and a Friedman Test based on mAP@0.5 results from 10 experimental trials for each
model,as shown in Table 5. The Repeated Measures ANOVA yielded a statistically significant result
(F(3, 27) = 252.38, p < 0.0001), indicating significant performance differences among the models.
Additionally, the non-parametric Friedman Test confirmed these findings, with a x2 statistic of 28.12
and p < 0.0001, further supporting the conclusion that the models differ significantly in terms of
detection accuracy. These results suggest that SCP-YOLOv5 and YOLOv7 significantly outperform
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YOLOv5s and YOLOv6s in small object detection tasks, validating the effectiveness of the proposed
improvements in SCP-YOLOv5.

Table 4: Performance of different algorithms for the COCO dataset

Algorithm mAP (%) FPS GPU

Faster R-CNN [5] 34.7 7 RTX3050Ti
Mask R-CNN [6] 37.8 5 RTX2070
YOLOv3 33.6 35 RTX3050Ti
YOLOv4 43.5 62 RTX2070
YOLOv5s 54.6 126 RTX3050Ti
YOLOv6 51.9 135 RTX2070
YOLOv7 56.4 161 RTX2070
Proposed 55.9 106 RTX3050Ti

Table 5: The results of 10 tests on the RJB dataset for different models

Algorithm mAP@0.5 (%)

YOLOv5s 90.4, 90.2, 90.6, 90.3, 90.5, 89.2, 88.9, 86.7, 89.3, 89.7
SCP-YOLOv5 96.9, 96.8, 97.0, 96.0, 96.9, 95.7, 96.7, 96.2, 95.8, 96.4
YOLOv6s 93.5, 93.6, 93.4, 93.7, 93.5, 93.3, 92.8, 92.7, 93.1, 92.5
YOLOv7 98.7, 98.6, 98.8, 98.7, 98.6, 97.3, 97.1, 98.1, 98.2, 97.9

3.3 Error Analysis and Outlook
Although the detection accuracy of the SCP-YOLOv5 algorithm for the homemade dataset was

increased by 3.1% for mAP@0.5 compared with the original YOLOv5s algorithm, a 3.2% error
remained.

The main sources of error may have been the following:

(1) Owing to the light source conditions of the experimental environment, small bearings appeared
to be reflective during image capture, resulting in a loss of key feature information.

(2) The dataset was insufficient. The top sliding spherical surface of the rod-end bearing had a
highly variable structure with different angles.

(3) Although the deep feature fusion module enhances the feature fusion, room for improvement
exists in feature representation capabilities.

In future research, we plan to replace the light source to ensure that the light evenly illuminates
the surface of the target object and retains the maximum amount of feature information, increase
the number of sliding spherical images from various angles to increase the diversity of the dataset,
prune the model, and compress and optimize the model to reduce the number of parameters and the
computational load while maintaining its accuracy.
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3.4 Detection Results
To intuitively demonstrate the detection effect of the improved algorithm, the YOLOv5s and SCP-

YOLOv5 algorithms were used for detection with the rod-end-bearing dataset, as shown in Fig. 11
(YOLOv5 algorithm on the left, SCP-YOLOv5 algorithm on the right).

Figure 11: Comparison of test results

As shown, the confidence of the SCP-YOLOv5 algorithm for small-bearing detection was higher
than that for the YOLOv5 algorithm. Evidently, SCP-YOLOv5 can detect small objects well, and the
detection frame is closer to the target, indicating that the improved model is more suitable for practical
applications.
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4 Conclusions

Detection was performed with rod-end bearing, T-LESS, and COCO datasets using various
algorithms. In the experiments, the SCP-YOLOv5 algorithm achieved the most balanced performance
and good detection results, meeting the requirements of practical applications, with regard to both
detection accuracy and speed. It has a significantly higher capability to extract feature information
from small rod-end bearings. Compared with the YOLOv5s algorithm, the SCP-YOLOv5 algorithm
improved the mAP@0.5 by 3.2% and 2.0% for the RJB and T-LESS datasets, respectively. Fur-
thermore, it improved the mAP by 1.3% for the COCO dataset. This study provides new research
perspectives on overcoming the limitations of insufficient feature information and weak contextual
representation in small-object detection. It also proposes a novel solution for detecting randomly
stacked small parts in CNC machine tool production environments. Although the model detection
accuracy was improved, the detection speed was lower than that before the improvements. Future
studies may aim to increase the detection speed while ensuring detection accuracy.
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