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Summary. Atherosclerosis is an inflammatory cardiovascular disease characterized by the
formation of plaques inside arteries. These plaques result from the accumulation of lipidic
substances over the years and can obstruct blood flow to downstream vessels and organs. Our
objective is to predict the possible onset of carotid plaques using Computational Fluid Dynamics
(CFD) simulations and to analyze the influence of hemodynamic and geometric parameters on
the early stages of the disease through stochastic sensitivity analysis. The ultimate goal is to
determine whether geometric parameters can be considered risk factors.

We combine CFD simulations with a model for predicting plaque onset and growth in the
carotid arteries. In this model, plaque growth depends on CFD-predicted wall shear stresses
and the concentration and accumulation of Low-Density Lipoprotein (LDL) in the vessel. Low
values of wall shear stress and higher LDL concentrations promote plaque formation. Starting
with a clinical dataset that includes 3D segmented geometries of the right and left carotids,
as well as flow rate waveforms in the common, external, and internal carotid arteries (CCA,
ECA, and ICA), we construct a parametric geometry to identify which geometric parameters
describing the carotid bifurcation are primarily responsible for the possible onset and growth
of arteriosclerotic plaques. Continuous response surfaces of plaque growth in the geometrical
parameter space are obtained using a probabilistic framework based on stochastic collocation
methods and sparsification.

Results indicate that the position of the ICA inflection point significantly impacts the location
and extent of the plaque. The Reynolds number also plays a role in plaque development, as it
directly affects the magnitude of wall shear stresses.

1 INTRODUCTION

Atherosclerosis is a cardiovascular disease (CVD) that gradually narrows the arteries due to
the formation of plaques in medium and large-sized blood vessels [1, 2]. This can obstruct the
blood supply to downstream vessels and organs, making it one of the major causes of death in
Western countries over the last few decades [3], accounting for 31.5% of all global deaths [4]
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for cardiovascular disease. Therefore, it is crucial to understand the genesis of atherosclerotic
plaques by identifying the main risk factors [5].

Computational Fluid Dynamics (CFD) simulations integrated with in-vivo data and disease-
specific mathematical models have been frequently used to analyze hemodynamic blood flows,
predict pathology evolution, and assess associated risks [6, 7]. Various mathematical models
specific to the carotid arteries have been developed to predict atherosclerotic plaque onset and
growth, as reviewed in [8]. Simple models consider linear relationships between wall displacement
and fluid-dynamic variables, such as the Wall Shear Stress (WSS) model [9], whereas more
complex models include additional parameters, like the Low-Density Lipoprotein (LDL) model
in [10], or describe the complete biological process using ordinary differential equations [11].
These models have been applied to either simple 2D/3D geometries [12] or more realistic patient-
specific 3D models [7] and boundary conditions [13, 14].

The arterial wall can be considered rigid or deformable for fluid-structure interaction and can
be modeled as a single layer of endothelial cells [10] or as a porous multi-layer vessel structure
[15]. Blood is modeled as a Newtonian fluid in large vessels [7, 16], while in smaller vessels such
as the carotids, non-Newtonian blood rheology is frequently employed to capture the shear-
thinning effect near the walls [17, 18], which directly influences the distribution of WSS sensed
by endothelial cells and consequently the prediction of plaque growth.

Among the possible risk factors, the geometrical parameters influence the hemodynamics of
blood flow, prompting some parametric and Uncertainty Quantification studies to consider the
influence of carotid geometrical features on plaque growth [19, 20, 21]. A large carotid sinus and
an increasing bifurcation angle promote low and oscillating wall shear stress (WSS) and reverse
flow [22], as do high values of the proximal area ratio [23]. This leads to a higher propensity for
plaque formation. Conversely, a larger carotid tortuosity is often associated with higher WSS
values [23] and a reduced risk of plaque onset. Additionally, the inlet and outlet diameters of
the carotid and the out-of-plane curvature of the branches influence the hemodynamics in the
branching region [20]. Low velocity values near the walls again promote plaque formation.

In this study, we conduct a stochastic sensitivity analysis to assess which geometric param-
eters of the carotid geometry most impact plaque onset and growth. We carried out numerical
simulations coupled with the plaque growth model from Gessaghi et al. [10]. We derive the para-
metric geometry of the carotids and the flow-rate waveform from an in-vivo acquired dataset by
locally modifying the geometry in the bifurcation region. We conduct an Uncertainty Quantifi-
cation (UQ) analysis using a stochastic collocation method with sparse grids to build continuous
response surfaces in the parameter space and to highlight how the risk factor is influenced by
geometrical parameters

2 MATERIALS AND METHODS

2.1 Clinical data-set and parametric geometry

The patient-specific clinical dataset of a 78-year-old male subject was obtained through in-
vivo measurements with his written consent. It contains (i) patient-specific diseased right and
left carotid images acquired from Computed Tomography (CT scan) and (ii) inlet/outlet flow
rates obtained from 4D-flow Magnetic Resonance Imaging (4D-flow MRI).

The diseased carotid geometric models are segmented from CT scans, and the healthy geo-
metric models are derived from the diseased models by applying an idealized endarterectomy.
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The patient-specific right and left carotids are used as references for constructing the paramet-
ric carotid geometries. First, the original layout of the spline describing the ICA and ECA is
determined, as shown by the black line in Figure 1a for the right carotid and Figure 1b for the
left carotid. Then, these reference models are modified in the bifurcation region of the carotids,
on both the Internal Carotid Artery (ICA) and the External Carotid Artery (ECA) sides. The
modified geometries are obtained by varying the spline based on the chosen uncertain geometri-
cal parameters − ECA inflection point, ICA inflection point, ECA spline curvature, ICA spline
curvature, and the Reynolds number − within a defined interval range. A possible parametric
geometry is shown in Figure 1a for the right carotid and in Figure 1b for the left carotid, where
the modified spline layout is highlighted in red, overlapped on the original layout in black. The
range of variation is determined to ensure physiologically realistic carotid parametric geometries.

(a) (b)

Figure 1: Sketch of the (a) right and (b) left patient-specific carotid geometrical models (black lines)
and example of parametric splines (red lines).

The 4D-flow MRI data are interpolated over the cardiac cycle period of T = 0.8 s to match
the flow rate waveforms at the Common Carotid Artery (CCA), ICA, and ECA, as shown in
Figure 2a and Figure 2c for the right carotid, and in Figure 2b and Figure 2d for the left carotid.

2.2 Numerical methodology and boundary conditions

The blood flow in the 3D fluid domain, Ω, represented by the healthy carotid lumen, is solved
numerically by discretizing the Navier-Stokes continuity and momentum equations in the steady
incompressible form:

∇ · v = 0 x ∈ Ω

ρ(v · ∇)v +∇p− µ∆v = 0 x ∈ Ω
(1)

where v represents the velocity flow field and p represents the pressure divided by the density.
In our case, the blood has a constant density ρ = 1050 kg/m3.

We carry out laminar simulations using a commercial finite-volume solver. Indeed, the
Reynolds number based on the bulk velocity and carotid diameter is always below 300. The segre-
gated SIMPLE algorithm is employed together with second-order-accurate spatial discretization
schemes. The blood is considered non-Newtonian with a shear-rate-dependent molecular vis-
cosity, η, described through the Carreau-Yasuda model [17]. The non-Newtonian model allows
to capture the shear-thinning effect, which causes a viscosity decrease with an increased shear
rate near the arterial wall, that is intricately connected to the microscopic structure of blood
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Figure 2: In-vivo-acquired flow-rate waveforms for (a,b) right carotid and (c,d) left carotid. Cardiac-
cycle averaged values are also reported.

and provides a more precise evaluation of the low and oscillating WSS in complex flow patterns
regions [18].

As concern the boundary conditions, fully-developed cardiac-cycle-averaged velocity profile
is imposed at the CCA inlets. Inlet flow-rate waveforms and the cycle-averaged value are shown
in Figs 2(a) and 2(b) for the right and left CCAs, respectively. A flow split ratio condition is
imposed at the ICA and ECA outlet sections to match clinical data: QICA = 0.66QCCA and
QECA = 0.34QCCA for the right carotid and QICA = 0.61QCCA and QECA = 0.39QCCA for the
left carotid. The operating pressure is set at 93.3 mmHg. The artery walls are considered rigid,
impermeable, with no-slip conditions. The fluid domain Ω is discretized through a polyhedric
computational grid with a prism layer at the wall. After grid independence analysis, a grid of
about 4 · 105 nodes is used for each carotid.

2.3 Plaque-growth model and morphing procedure

We apply the model developed in [10] to predict the early stages of atherosclerotic plaque
onset and growth in patient-specific carotids. The arterial wall displacement is related to the
magnitude of the wall shear stress τ , the concentration and transport of the LDL in the vessel
lumen, the LDL passage through the vessel wall into the intima where it accumulates and
oxidizes, and other hemodynamic variables. Given the CFD-computed velocity and τ fields, the
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wall displacement representing plaque growth is evaluated through coupled first-order ordinary
differential equations:

ṁ = α · m
e
− k ·m+ γ

ė = β · k

ρLDLox

·m
(2)

where ṁ and ė are the time evolution of intimal LDL mass accumulation per unit area (m)
and intimal thickness (e), respectively. The other terms of the system of equations are the
density of the oxidized LDL, ρLDLox = 1060 kg/m3, the oxidation rate, k, the constant, β,
and the parameters, α and γ, expressed in function of the physiologic variables, including the
CFD-computed τ (< 0.3 Pa) and the LDL blood concentration, cldl = 1.2 kg/m3. The detail
of parameters and further equations can be found in [10]. Moreover, a morphing procedure
is applied to simulate the arterial wall thickening that allows to gradually modify the carotid
geometry with a localized reduction of the lumen area normal to the arterial wall [27]. We
demonstrate in [25] that τ field obtained in steady simulation are suitable to predict the plaque
evolution through the model by [10]. As in [25], we choose to apply the morphing procedure
every three months.

2.4 Uncertainty Quantification procedure

We carry out a stochastic sensitivity analysis to investigate the effect of the carotid geometry
on the plaque onset and growth. To this aim, we build a parametric model of the carotid
bifurcation (see the red lines in Fig.1). We select five parameters for the right and left carotids,
viz. the ECA inflection point, the ICA inflection point, the ECA spine curvature, the ICA spline
curvature, and the Reynolds number (which is related to the carotid size). The related variation
ranges are reported in table 1.

We perform the analysis by using the stochastic collocation method and the sparse grid
formulation. We consider an uniform Probability Density Function (PDF) for each uncertain
parameter in the interval range and thus Lagrange interpolant are chosen. Clenshaw-Curtis
collocation points are considered to obtain nested and bounded levels, following the progression:

m(i) =

{
1, for i = 1,

2i−1 + 1, for i ≥ 1.
(3)

In our study, we use i = 2, resulting in a total of 61 simulations for each carotid. This

Table 1: Variation ranges of the uncertain parameters considered in the UQ procedure.

Variation ranges
Uncertain parameters Right carotid Left carotid

ECA inflection point (mm) 55-63 58.5-66.5

ICA inflection point (mm) 55.5-63.5 62-70

ECA spine curvature 0.2-1 0.8-1.6

ICA spline curvature 0.8-1.6 0.8-1.6

Reynolds 255-345 280-380
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is significantly fewer than the nn = 55 simulations required for tensor grids, allowing us to
save computational resources without sacrificing accuracy. The UQ analysis is performed using
the Sparse Grid Matlab Toolbox by [28]. Based on the response surface obtained through the
stochastic collocation method, we employ a generalized Polynomial Chaos (gPC) expansion with
Legendre polynomials to calculate the partial sensitivities σi.

3 RESULTS

We present the results of the stochastic sensitivity analysis for the right and left carotids,
focusing on the uncertainty quantification (UQ) of plaque growth in terms of the displacement
field, ∆e, evaluated after one year. Figures 3 and 4 display the stochastic mean value, ⟨∆e⟩, and
the stochastic standard deviation, σ(∆e), respectively. The plaque-onset region identified from
the mean displacement field closely resembles the region found for patient-specific left and right
geometries in [25], where it was determined that the LDL model provides accurate predictions for
both the onset location and early-stage plaque growth. Notably, the right carotid is more prone
to plaque formation throughout the bifurcation region, while in the left carotid, plaque onset
and growth occur primarily on the ICA side. Significant variability in plaque growth related to
local geometry is observed mainly at the plaque’s edge, whereas the onset of the plaque appears
independent of the local geometry.

(a) (b)

Figure 3: Stochastic mean value for the displacement field, ⟨∆e⟩, for (a) right and (b) left carotids.

(a) (b)

Figure 4: Stochastic standard deviation for the displacement field, σ(∆e), for (a) right and (b) left
carotids.
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The partial sensitivities of the displacement field, σi(∆e), are shown in Fig. 5 for the right
carotid and in Fig. 6 for the left carotid. For both arteries, the most significant parameter
is the position of the ICA inflection point. Additionally, for the right carotid, curvature and
Reynolds number are also significant factors. In contrast, plaque evolution in the left carotid is
less sensitive to Reynolds number, as the plaque forms near the bifurcation, while changes in
Re primarily influence wall shear stress (WSS) in the common carotid.

Figure 5: Partial sensitivities for the displacement field, σi(∆e), for the right carotids.

Figure 6: Partial sensitivities for the displacement field, σi(∆e), for the left carotids.

4 CONCLUSIONS

This research focuses on evaluating the impact of hemodynamic and geometrical parameters
on the potential onset and growth of atherosclerotic plaques in carotid arteries. We begin with
a clinical dataset that includes patient-specific geometries and flow rates, which are used to
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construct parametric models of the carotid arteries. A stochastic sensitivity analysis is then
conducted using stochastic collocation methods. Plaque onset and growth are assessed through
CFD simulations, integrated with the LDL-model of plaque growth from [10]. This model adapts
the geometry based on the computed displacement field via a morphing procedure.

At the plaque’s edge, significant variability in plaque growth is observed, closely associated
with the local geometry. The most influential parameter for both carotids is the position of the
ICA inflection point. Additionally, for the right carotid, curvature and Reynolds number also
play a significant role.

For future work, we plan to investigate through unsteady simulations how the evolution during
the cardiac cycle of the vortical structures that form at the bifurcation might help explain the
results of the stochastic analysis. Furthermore, additional quantitative validation of the growth
rates predicted by the numerical model, using patient-specific follow-up data, may be performed.
Finally, we aim to generalize the relationship between the risk of plaque onset and growth and
the geometrical parameters across more patient-specific geometries (considering not only local
differences) and additional parameters, such as the inclination angle.
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