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ABSTRACT  

It is widely acknowledged that many geotechnical properties are correlated over space and/or time. Consequently, cross-
correlated random fields play a pivotal role in geotechnical reliability analysis for properly modeling both the auto- and 
cross-correlation structures of correlated geotechnical properties. Existing methods for simulating cross-correlated 
random fields typically require precise knowledge of random field parameters as input. However, in a typical site 
investigation program, engineering constraints such as limited time, budget, and space often lead to sparse measurements 
of geotechnical properties. Estimating reliable random field parameters, particularly the auto-correlation and cross-
correlation structures of a two-dimensional (2D) cross-correlated random field, from such sparse data is a notorious 
challenge. To address this issue, this study introduces a 2D cross-correlated random field generator that can directly 
simulate 2D multivariate cross-correlated geotechnical random field samples (RFSs) from sparsely measured data points. 
This generator leverages the method developed by Guan and Wang (2023), which employs a joint sparse representation 
to simultaneously exploit auto- and cross-correlation structures of various spatial/temporal quantities directly from sparse 
measurements. The effectiveness of the proposed generator is demonstrated using real geotechnical properties data. The 
results demonstrate that RFSs generated using this method from sparse measurements accurately capture the spatial auto- 
and cross-correlation structures of different geotechnical properties.  
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1. Introduction 

It is widely recognized that many geotechnical 
properties display cross-correlation and spatial 
variability (e.g., Vanmarcke et al., 2010). Therefore, 
properly accounting for both autocorrelation and cross-
correlation structures in correlated geotechnical 
properties is crucial for subsequent geotechnical 
reliability analysis. Cross-correlated random fields have 
emerged as indispensable tools for simultaneously 
incorporating both auto- and cross-correlation aspects of 
geotechnical properties in stochastic analysis. 

Several cross-correlated random fields methods have 
been developed in the literature (e.g., Shinozuka and 
Deodatis, 1991; Robin et al., 1993; Vořechovský, 2008). 
Existing methods for simulating cross-correlated random 
fields typically necessitate explicit information about 
random field parameters (e.g., functional forms and 
parameters of auto- and cross-correlation structures) as 
inputs, which are often estimated using site-specific 
measurements. In engineering practice, geotechnical 
properties are frequently sparsely measured within a 
typical site due to constraints in time, budget, and space 
(e.g., Guan and Wang, 2020; Guan et al. 2023), and 
estimating reliable random field parameters, particularly 
the auto-correlation and cross-correlation structures of a 
two-dimensional (2D) cross-correlated geotechnical 

properties random field, from such data is a notorious 
challenge. 

To tackle these challenges, this study introduces a 
novel 2D cross-correlated geotechnical random fields 
generator capable of producing 2D cross-correlated 
geotechnical random field samples (RFSs) directly from 
sparsely obtained measurements. This generator builds 
upon the method developed by Guan and Wang (2023), 
which utilizes joint sparse representation to concurrently 
exploit auto- and cross-correlation structures of various 
spatial/temporal quantities directly from sparse 
measurements in a data-driven manner. Explicit 
functional forms and parameters of auto- and cross-
correlation structures are not required for the introduced 
random field generator. The efficacy of the proposed 
method is demonstrated using real geotechnical data 
from California, USA. 

2. Data-driven cross-correlated 
geotechnical random fields generator 

Geotechnical properties are usually spatially and 
correlated, lending themselves to a sparse representation 
in suitable bases, such as the discrete cosine transform 
(DCT) (e.g., Wang and Zhao, 2017; Guan and Wang, 
2021). Mathematically, geotechnical properties data 
within a 2D space can be represented by an 

1 2x xN N  



 

data matrix F, which can be expressed by a linear 
combination of 

1 2x xN = N N  2D basis functions:  
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where 2D
kB  and 2D

kω  are the k-th 2D basis function and 

corresponding weight coefficient, respectively. When F 
has a sparse representation, it implies that only a small 
number of coefficients are non-zero.  

Generally speaking, geotechnical properties with 
strong positive cross-correlation tend to exhibit similar 
global spatial or temporal patterns, while each property 
may also possess unique spatial or temporal 
characteristics. Consequently, when different positively 
correlated geotechnical property datasets are linearly 
normalized to a common scale, the normalized data often 
share a common component. Moreover, each individual 
property dataset may display its own distinct component. 
Both the common and individual components can be 
sparsely represented and formulated within a joint sparse 
representation framework. Under this framework, the 
normalized 2D data of two positively correlated 
geotechnical properties, Q1 and Q2 denoted as 

1QF  and 

2QF  with the same dimensions, can be jointly represented 

as (Guan and Wang, 2023): 
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where C
kω  indicate the k-th weight coefficient of 

common component for 
1QF  and 

2QF , while 1U
k  and 

2U
k  indicate the k-th weight coefficients of individual 

component for 
1QF  and 

2QF , respectively. Let column 

vectors 1
y  and 2

y  represent measurements of 
1QF  and 

2QF , respectively, as expressed: 
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where measurement matrices 1A  and 2A  are developed 

according to the locations of measurements in 
1QF  and 

2QF , respectively; 
T

1 2, ,...,C C C C
Nω ω ω     indicates the 

weight coefficient vector for common component; 

1 1 1 1
T

1 2, ,...,U U U U
Nω ω ω     and 

2 2 2 2
T

1 2, ,...,U U U U
Nω ω ω     are weight coefficient 

vectors of individual component for 
1Qy  and 

2Qy . 

Combining Eqs. (4) and (5) leads to: 
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Eq. (6) can be further re-written as: 
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.  
Leveraging on the joint sparse representation, non-

trivial weight coefficients in e  can be jointly estimated 

from the measurement ensemble, ey  under the 

Compressive sensing/sampling (CS) framework (e.g., 
Candès and Tao, 2006), and then the complete 2D 
geotechnical properties data, 

1QF  and 
2QF  can be 

simultaneously reconstructed using Eqs. (2)&(3). It is 
important to note that when the measured data points are 
limited, the reconstructed results may contain significant 
statistical uncertainty. To incorporate such uncertainty, 
CS can be combined with a Bayesian framework, known 
as Bayesian compressive sampling (BCS), for generating 
random field samples (e.g., Wang et al., 2019). 

Under a Bayesian framework, an approximation of 
the joint weight coefficients vector for two correlated 

geotechnical properties, e , denoted as ê  can be 
probabilistically estimated from the measurement 

ensemble, ey  (e.g., Ji et al., 2008): 
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where e eˆ( )p y   is the Gaussian likelihood function 

reflecting the probability of observing the data ensemble, 
ey  given ê ; a three-level hierarchical prior, i.e., 

Gaussian-Inverse Gamma-Gamma prior, eˆ( )p   is 

adopted to promote the sparsity of ê ; e( )p y  is a 

normalizing constant. Based on these settings, e eˆ( )p y  

can be conveniently represented as a multivariate normal 
distribution with a mean, eˆ

μ


 and a covariance, eˆ
COV


 

(e.g., Wang et al., 2019): 
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where D  is an 3 3N N  diagonal matrix with the 

elements of vector 1 2 3, ,...,  N      on the main 

diagonal, where   follows a generalized inverse 
Gaussian distribution: 
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where pK  represents a modified Bessel function of the 

second kind with parameter 1 / 2p    and e 2ˆ( )t ta  . 
e eˆ( | , , , )p   y   and e eˆ( | , , , )p   y   follow two 

Gamma distributions: 

 e eˆ( | , , , ) ,  n np Gamma c d  y 
                                 (11) 
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where / 2 1nc M  ; M represents the total number of 

measurements;
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; 0a , 0b  and 0d  may be taken as a small value to achieve 

the non-informative prior information for ê  (e.g., 0a  = 

0b  = 0d  = 10-4). Note that the distribution types of  , 

  and   are derived based on the Gaussian likelihood 

function and three-level hierarchical prior. The above 
equations can be efficiently solved using Markov chain 
Monte Carlo (MCMC), and many (e.g., Nb = 200) 2D 
cross-correlated random field samples of Q1 and Q2 can 
be generated using MCMC simulation. The detailed 
formulation for the generation of random field samples 
using MCMC can be referred to Guan and Wang (2023). 
 

3. Illustration example 

It is widely recognized that cone penetration test 
(CPT) tip resistance, qc and sleeve friction, fs data exhibit 
positive correlations (e.g., Robertson and Campanella 
1983). In this section, the proposed cross-correlated 
random fields method is employed to generate cross-
correlated random field samples of qc and fs within a 
cross-section from sparse measurements at the Wildlife 
Liquefaction Array (WLA) site situated in the Imperial 
Valley, California, USA. The surface soil layer at the 
WLA site primarily comprises a 2.5 to 3.3m thick layer 
of silty clay to clayey silt, underlain by a 3.5m to 4m thick 
layer of silty sand and sandy silt. The water table at the 
site is approximately 1.2m below the ground surface. 

A representative geotechnical cross-section, denoted 
as A-A’, is delineated in Fig. 1 by a red solid line. The 
width of cross-section A-A’ spans approximately 43m, 
while its depth ranges from about 3.4m to around 7.0m, 
containing the layer of silty sand and sandy silt. Five CPT 
soundings (i.e., 1Cg, 3Cg, 4Cg, 5Cg, and 7Cg) are 
conducted within this cross-section, as illustrated in Fig. 
1 by solid circles. The corresponding CPT qc and fs data 
are obtained from the Network for Earthquake 
Engineering Simulation Research (NEES) Database 

(URL: http://nees.ucsb.edu/facilities/wla), as depicted in 
Fig. 2. The calculated cross-correlation coefficient for 
these measurements is determined to be 0.4, indicating a 
medium positive correlation. Subsequently, these 
measurement data serve as the input for the proposed 
method to generate Nb = 200 cross-correlated RFSs of qc 
and fs. 

 

 
Figure 1. Locations of CPT used in this study at the 
Wildlife Liquefaction Array (after Holzer and Youd 
2007) 

 

 
Figure 2. Five CPT tip resistance qc and sleeve friction, 
fs data profiles at the Wildlife Liquefaction Array 
 

Two typical cross-correlated RFS pairs of qc and fs 
generated from the sparse measurements are depicted in 
Fig. 3. For each generated RFS pair of qc and fs, a Pearson 
cross-correlation coefficient, ρ, between qc and fs data can 
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be computed, resulting in 200 cross-correlation 
coefficients. The histogram illustrating these 200 
calculated cross-correlation coefficients ranges from 
approximately 0.30 to about 0.47, with a mean of 0.4 and 
a standard deviation of 0.03, as presented in Fig. 4. It is 
noteworthy that the cross-correlation coefficients of the 
generated RFS pairs of qc and fs generally align with 
those of the measured data points. 

Furthermore, the mean and standard deviation (SD) 
of the 200 generated RFSs of qc and fs are depicted in 
Figs. 5&6. Figs. 5(b)&6(b) reveals that the statistical 
uncertainties at locations proximal to the measured data 
points are notably smaller than those at locations distant 
from the measurements. These observations imply that 
the cross-correlation between qc and fs data can be 
properly characterized using 200 RFSs generated using 
the proposed method. 

 

 

 
(a) Cross-correlated RFS pair #1 (cross-correlation 

coefficient,   = 0.41) 

 

 
(b) Cross-correlated RFS pair #2 (cross-correlation 

coefficient,   = 0.38) 

Figure 3. Two cross-correlated random field sample 
(RFS) pairs of cone penetration test (CPT) tip resistance, 
qc and sleeve friction, fs data generated from the proposed 
method 
 

 
Figure 4. Histogram of the cross-correlation coefficients 
of Nb = 200 pairs of generated random field samples  

 

 
(a) Mean of the RFSs 

 
(b) Standard deviation (SD) of the RFSs 

Figure 5. Mean and standard deviation of 200 generated 
random field samples (RFSs) of cone penetration test 
(CPT) tip resistance, qc 
 

 
(a) Mean of the RFSs 

 
(b) Standard deviation (SD) of the RFSs 

Figure 6. Mean and standard deviation of 200 generated 
random field samples (RFSs) of cone penetration test 
(CPT) sleeve friction, fs 
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4. Conclusions 

This paper introduces a novel data-driven approach 
for generating 2D cross-correlated random field samples 
(RFSs) of geotechnical properties from sparse 
measurement data. By simultaneously exploiting auto- 
and cross-correlation structures of different geotechnical 
properties through joint sparse representation, this 
method eliminates the need for explicit prior information 
about random field parameters. Leveraging Bayesian 
Compressive Sampling (BCS) and Markov Chain Monte 
Carlo (MCMC) sampling techniques, the method enables 
the generation of cross-correlated RFSs for correlated 
geotechnical properties, incorporating statistical 
uncertainty arising from sparse data interpretation. The 
presented method was demonstrated using real CPT data 
from the Wildlife Liquefaction Array (WLA), USA. The 
illustration example indicated that the presented method 
can properly generate cross-correlated qc and fs cross-
sections from sparse data. 
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