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Summary. A sudden failure of a single supporting element within a reinforced concrete (RC) 

frame can lead to a disproportionate collapse if the design lacks mechanisms to confine initial 

damage through resisting mechanisms. Given the substantial impact of uncertainties related to 

material properties and geometric parameters on these mechanisms, coupled with the high 

stakes associated with such failures, the risk-based optimization offers a practical approach to 

achieving a balance between cost-efficiency and safety. Besides, optimal risk-based design is 

strongly dependent on the structural configuration. This study exemplifies this approach by 

optimizing five RC frames under three scenarios of column removal on the first floor: middle 

column, penultimate column, and corner column. Design variables encompass cross-sectional 

depth, steel rebar areas, and concrete strength of beams and columns. Failure consequences are 

evaluated for both the intact structure and all column removal scenarios. Conducting a physical 

and geometrical nonlinear static analysis, sample points undergo bay pushdown analysis in 

OpenSees software. Addressing failure probabilities utilizes the Weighted Average Simulation 

Method, with risk optimization performed by the Firefly Algorithm. To mitigate computational 

costs arising from nonlinearities and a high number of required sample points, surrogates are 

used to quickly estimate limit states and reliability indexes. Results contrasts with the observed 

trend in Beck et al. [1], with optimal beam strengthening not varying in terms of the frame's 

aspect ratio. 
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1 INTRODUCTION 

Progressive collapse happens when an initial member failure triggers the failure of the 

adjacent elements, in resemblance to a cascade effect, leading to a final failure with a 

disproportionate higher severity in relation to the initial event [2]. When under multiple hazards, 

the probability of structural collapse 𝑃[𝐶] is given as: 

 𝑃[𝐶] = ∑ ∑ 𝑃[𝐶|𝐿𝐷, 𝐻]
𝐿𝐷

𝑃[𝐿𝐷|𝐻] 𝑃[𝐻]
𝐻

 (1) 

where 𝑃[𝐻] is the probability of hazard occurrence; 𝑃[𝐿𝐷|𝐻] is the conditional probability of 

local damage for a given hazard 𝐻; and 𝑃[𝐶|𝐿𝐷, 𝐻] is the conditional probability of collapse 

for a given 𝐿𝐷 and 𝐻.  

This study follows Beck et al. [1, 3], considering 𝑃[𝐿𝐷|𝐻] 𝑃[𝐻] as the probability of local 

damage 𝑃𝐿𝐷 to combine column loss and intact structure scenarios in a single objective function 

related to total expected costs 𝐶𝑇𝐸. Hence, the cost-benefit of considering column removal 

scenarios in designing RC frames while considering the realistic nonlinear structural behavior 

is then addressed. 

Based on Beck et al. [1], this work focuses on investigating the influence of the frame aspect 

ratio over the optimal risk–based design. More specifically, it is investigated if the preference 

for optimal stronger beams in taller frames and weaker beams in lower frames is also shown 

when addressing a nonlinear capacity model for progressive collapse simulation.  

Five RC frames with distinct aspect ratios (number of bays x number of stories) are the 

objects of study. All frames have similar “tributary” area in terms of number of bays multiplied 

by the number of stories (Figure 1). Each frame has beam spans of 6.00 m and column interstory 

height of 3.00 m, and each frame is subjected to 4 scenarios: intact structure, loss of exterior 

column at ground floor, loss of penultimate column at ground floor, and loss of middle column 

at ground floor. Each column loss scenario is treated individually, so local damage probability 

𝑃𝐿𝐷 relates to the sudden loss of one column at a time. 

 

 
Figure 1: Objects of study 

2 PROPOSED FRAMEWORK 

Based on Beck et al. [1,3], a threat-independent approach is adopted, combining hazard 

probability and column loss probability conditional to hazard as probability of local damage 

𝑃𝐿𝐷 = ∑ 𝑃[𝐶𝐿|𝐻]𝑃[𝐻]𝐻 . To comprehend how progressive collapse influences the optimal risk-

based design for each frame, 𝑃𝐿𝐷 is assumed to range between a lower value 𝑃𝐿𝐷
𝑚𝑖𝑛 = 5 × 10−6 

to 1. This allows to cover scenarios gradually changing from negligible to significant threat of 

column loss. It is noteworthy to mention that 𝑃𝐿𝐷
𝑚𝑖𝑛 relates to the 50-year lifespan equivalent to 

the “de minimis” annual probability 𝑝 = 10−7 [4]. 
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The adopted framework relies on four pillars (Figure 2): 

 

(a) risk-based optimization: total expected costs, given by cost of construction and 

expected costs of failure, are minimized for each 𝑃𝐿𝐷 via Firefly Algorithm [5]; 

(b) reliability analysis: in order to compute the expected costs of failure, probability 

of occurrence for each failure mode is addressed by Weighted Average Simulation 

Method (WASM) [6]; 

(c) structural modeling: at each sample point, structural response is addressed via 

nonlinear FEM for limit state evaluation with OpenSees [7]; 

(d) surrogate usage: as structural and reliability analyses have great computational 

burden, simplified yet accurate estimations via Inverse Distance Weighting (IDW) 

[8] are used to hasten these stages. 

 

 
Figure 2: Proposed framework 

 

The primary frames of Figure 1 are extracted from the interior of the building, so 

unidirectional floor slabs lead to floor loadings from both sides. Although facade columns at 

ground floor are more exposed for certain hazards, such as IEDs and vehicular impacts, it is 

herein assumed buildings with easy access at ground floor. Hence, admitting terrorist attacks 

as potential hazard, inner column spans are also prone to malicious intentions.  
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The total expected cost 𝐶𝑇𝐸 (Eq. 2) to be minimized (via Eq. 3) addresses manufactural costs 

and the expected costs of all failure modes. Additional life-cycle costs could be included in 𝐶𝑇𝐸, 

but they are out of the scope of this manuscript.  

 

 𝐶𝑇𝐸(𝑿, 𝒅) = 𝐶𝑀 + ∑ 𝑘𝑖𝑃𝑓𝑖𝐶𝑀𝐴𝑖

𝑁𝐼𝐹

𝑖=1

+ ∑ ∑ 𝑘𝑗𝑃𝑓𝑗𝐶𝑀𝐴𝑗𝑃𝐿𝐷𝑘𝑗

𝑁𝐶𝐿𝐹

𝑗=1

𝑁𝐶𝐿

𝑘=1

 (2) 

 

 

                                               find 𝒅∗ 

                  which minimizes 𝐶𝑇𝐸(𝑿, 𝒅) 

                                        subject to 𝒅 ∈ 𝓓 

 

(3) 

In Eq. 2, 𝐶𝑀 is the construction cost; NIF and NCLF represent the number of failure modes 

for intact and each column loss scenario, respectively; and 𝑁𝐶𝐿 stands for the number of 

column loss scenarios. Vector 𝑿 relates to the random variables, while vector 𝒅 corresponds to 

the mean value to be optimized for each random design variable. Parameter 𝐶𝑀𝐴 refers to the 

construction cost of the areas damaged by a given failure mode. Multipliers 𝑘 relate to the 

severity of each failure mode (Table 2). As shown in Figure 3, design variables 𝒅 are the beam 

depth ℎ𝐵, beam rebar diameter 𝜙𝐵 (symmetric bottom and top rebars), beam stirrup spacing 𝑠𝑡, 

column size ℎ𝐶  (square column), column rebar diameter 𝜙𝐶 , and overall concrete strength 𝑓𝑐
′.  

 

 
Figure 3: Design variables. 

 

Rebars are assumed symmetric to facilitate results comprehension given the greater 

complexity of addressing and comparing multiple frames. Besides, a seemingly exaggerated 

number of 16 columns rebars is chosen to ensure that a unique detailing is able to cover all 

frames in all scenarios given the design domain 𝓓, which is favorable in terms of direct 

comparisons between distinct frames.  

Reinforcing the entire frame is the only progressive collapse mitigating strategy addressed, 

as the scope of this example relies in exclusively addressing aspect ratio influence. Based on 

Starossek and Haberland [9], structural segmentation could be more appropriate for the 

horizontally aligned frames than an APM design, but this is avoided to allow an initial direct 

comparison between frames.  
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The probability of occurrence of each failure mode for each column loss scenario and frame 

configuration is estimated via IDW [8], which relies on 2000 design support points with failure 

probabilities computed via WASM [6]. Table 1 shows the uncertainty modelling for reliability 

analysis at the design support points. A sample with 30 million points is enough to ensure 

probability convergence for each failure mode, 2000 design support points, and for each frame.  

Each sample point created via LHS has its limit states computed as shown in Table 2, with 

the most relevant internal forces and ultimate load capacity at CA estimated via IDW. The 

parameters obtained via IDW refer to the static pushdown curve, so Energy Equivalence 

Method [10] is used to obtain these parameters in terms of the Pseudo-static pushdown curve 

in order to address the dynamic effects. This initial metamodeling stage relies on 2000 limit 

state support points, which are analyzed in OpenSees.  

 
Table 2: Uncertainty modeling 

Category RV Distribution Mean 
Standard 

deviation 

Coefficient 

of variation 

Geometry 

Beam  

depth (ℎ𝐵) 
Normal 

To be 

optimized* 
1 mm - 

Beam rebar  

diameter (𝜙𝐵) 
Normal 

To be 

optimized* 
- 0.05 

Stirrup  

spacing (𝑠𝑡) 
Normal 

To be 

optimized* 
- 

0.05 

(assumed) 

Column 

size (ℎ𝐶) 
Normal 

To be 

optimized* 
1 mm - 

Column rebar  

diameter (𝜙𝐶) 
Normal 

To be 

optimized* 
- 0.05 

Material 

Concrete  

strength (𝑓𝑐
′) 

Lognormal 
To be 

optimized* 
- 0.12 

Rebar yield  

strength (𝑓𝑦) 
Normal 510 MPa - 0.05 

Concrete unit  

weight (𝛾𝑐) 
Normal 25 kN/m³ - 

0.05 

(assumed) 

Ultimate steel  

strain (𝜀𝑠𝑢) 
Normal 0.20 - 0.14 

Loads 

Dead  

load (𝐷) 
Normal 1.05𝐷𝑛 - 0.10 

50-year live  

load (𝐿50) 
Gumbel 1.00𝐿𝑛 - 0.25 

Arbitrary point 

in time live load 

(𝐿𝑎𝑝𝑡) 
Gamma 0.25𝐿𝑛 - 0.55 

Structural 

model 

Model  

error (𝑀𝐸) 
Lognormal 1.101 0.187 - 
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Table 2: Failure modes. 

Case 
Failure 

mode 
𝑘 Limit state function Damaged area 

Intact 

structure 

(𝐼) 

Large 

deflection 
5 𝑔𝐼,𝑆𝐸(𝒙) = 𝛿𝑙𝑖𝑚 − 𝛿(𝑞𝐼) 

 

Bending 

failure at 

midspan 

30 𝑔𝐼,𝐵𝑀(𝒙) = 𝑀𝑅𝑀 − 𝑀𝑀(𝑞𝐼) 

 

Bending 

failure at 

beam ends 

30 𝑔𝐼,𝐵𝐸(𝒙) = 𝑀𝑅𝐸 − 𝑀𝐸(𝑞𝐼) 

 

Shear 

failure 
60 𝑔𝐼,𝑆𝐻(𝒙) = 𝑉𝑅 − 𝑉(𝑞𝐼) 

 

Column 

failure 
60 𝑔𝐼,𝐶𝑂𝐿(𝒙) = 𝑅(𝑁𝑅 , 𝑀𝑅) − 𝑆(𝑁𝑆𝐼 , 𝑀𝑆𝐼) 

 

Column 

loss 

(𝐶𝐿𝑖) 

Rebar 

rupture 
40 𝑔𝐶𝐿𝑖,𝑆𝑅(𝒙) = 𝑞𝐶𝐿𝑖,𝑆𝑅 − 𝑞̃𝐶𝐿 

 

Shear 

failure 
60 𝑔𝐶𝐿𝑖,𝑆𝐻(𝒙) = 𝑉𝑅 − 𝑉(𝑞̃𝐶𝐿) 

 

Column 

failure 
80 𝑔𝐶𝐿𝑖,𝐶𝑂𝐿(𝒙) = 𝑅(𝑁𝑅 , 𝑀𝑅) − 𝑆(𝑁̃𝑆𝐶𝐿𝑖, 𝑀̃𝑆𝐶𝐿𝑖) 

 

 

Each beam span is discretized in 5 fiber displacement-based finite elements (3 Lobatto 

integration points in each), being 3 finite elements for the member itself and 1 at each end to 

represent the joint region. Praxedes [11] shows the efficiency of this approach in terms of 

minimal refinement level and agreement with experimental static pushdown curves.  

Corrotational transformation is used for all beam and column elements to account for the 

expected large geometrical nonlinearities. Cross-section layering consists of 200 fibers for the 

confined concrete and 10 fibers for each face of unconfined concrete cover. Static bay 

pushdown analysis is performed with a displacement-based integrator using Kylov-Newton 

method to solve the nonlinear problem (tolerance of 10
-5

). An initial increment size of 1 mm is 

adopted, but an adaptive algorithm is used to enhance or decrease the step depending on the 

lack or need of convergence improvement, respectively.  

Since in bay pushdown analysis [12] only the beam spans adjacent to the lost column have 

an increasing load applied, two load steps are adopted: a) nominal dead and live load are applied 

over all beam spans, as well as the self-weight of each structural member on itself; b) if beam 

rebar rupture does not occur on the first stage (possible for weak beam configurations), an 

increasing load is applied over the beam spans of interest until rebar rupture is verified. 
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The modified Park-Kent model [13] is used as reference to estimate the confined and 

unconfined concrete behavior in compression, and the multilinear model from fib Model Code 

[14] is the reference for concrete in tension. All main parameters from both models are used as 

inputs for the “concretewBeta” model available in OpenSees, relying on cross-section 

geometry, 𝑓𝑐
′ and stirrup detailing to be inferred.  

Rebar behavior is represented by the “ReinforcingSteel” model, which realistically 

encompasses the linear elastic region, the yield plateau, strain hardening, and strain softening 

which are expected for typical steel reinforcements. Usual bilinear models are not used due a 

fixed value of hardening modulus of elasticity 𝐸𝑠ℎ being adopted, which leads to load x 

displacement discrepancies and unrealistic rebar stresses for advanced stages of catenary action.  

3 RESULTS 

Figure 4 shows the increase in beam capacity in terms of the optimal risk-based results for 

each frame configuration under each individual columns loss scenario. In Figure 4, external, 

penultimate and middle column loss scenarios are represented by 𝐸𝐶𝐿, 𝑃𝐶𝐿 and 𝑀𝐶𝐿, 

respectively; 𝐵𝑀 relates to bending capacity and 𝑆𝐻 to shear capacity. Since rebars are 

symmetric, no distinction is made between positive or negative bending capacity. 

 

Figure 4: Optimal beam resistance factors. 
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Optimal risk-based designs related to a Normal Loading Condition are constant from 𝑃𝐿𝐷
𝑚𝑖𝑛 

up to 𝑃𝐿𝐷 ≈ 10−3 (1st stage), after which a threshold 𝑃𝐿𝐷
𝑡ℎ  is identified in all cass. Past this point, 

APM design against progressive collapse becomes cost-effective, defining a 2nd stage.  

Optimal 1st stage beam design is: beam depth up to its upper bound, rebar ratio of 0.42%, 

and stirrup ratio of 0.17%. Load combination 𝑞𝐼 = 1.2𝐷𝑛 + 1.6𝐿𝑛 leads to roughly 64 kN/m 

over the beam spans. Hence, DCRs are obtained as follows: 1.03 for bending at the beam ends 

(𝜙 = 0.9); 0.52 for bending at the midspan (𝜙 = 0.9); and 0.82 for shear failure (𝜙 = 0.75). As 

symmetric rebars are adopted, more than enough safety is shown against midspan bending.  

Optimal 1st stage column design shows an expected increased capacity for taller frames. 

Combination for usual loading condition 𝑞𝐼 = 1.2𝐷𝑛 + 1.6𝐿𝑛 leads to roughly 64 kN/m in the 

beam spans (6 m) and 4.8 kN/m for column spans (3 m). At floor level, it is roughly expected 

1550 kN for the lowest frame (4 x 9); 2000 kN for the lower intermediate frame (5 x 7); 2330 

kN for the squared frame (6 x 6); 2800 kN for the taller intermediate frame (7 x 5); and 3600 

kN for the tallest frame (9 x 4). These expected axial demands corresponds to 0.36, 0.48, 0.56, 

0.52 and 0.59 of the respective optimal axial column capacities, and a minimum eccentricity of 

20 mm still keeps each axial load x moment demand inside the column resisting envelope. The 

top corner of each frame presents negligible axial forces and bending moments of ~0.05 of its 

greatest axial demand. By comparing these demands with the columns optimal resisting 

envelopes, DCRs ranging from 1.2 (taller frame) to 0.77 (lower frame) are obtained. 

Hence, lower safety margins are allowed for column failure as the frame height increases, 

reaching DCR > 1 at the frame top corner (𝜙 = 0.9, as demand is mainly flexural) and ~0.91at 

the ground floor (𝜙 = 0.65) for the tallest frame configuration. As the column cost/meter 

increases for taller frames, cost-effectiveness of avoiding column plastification reduces for the 

intact structure, especially at the top corner of the frames. 

Overall concrete strength 𝑓𝑐
′ shows the same multipurpose characteristics of the beam depth 

ℎ𝐵. Although it does not influence the pushdown behavior, an increased 𝑓𝑐
′ directly provides 

greater resistance against 5 failure modes: serviceability, negative and positive beam bending, 

shear failure and column failure. Therefore, ensuring 𝑓𝑐
′∗

 at its upper bound in 𝓓 (45 MPa) for 

all frames in all scenarios is shown to be the choice of best cost-effectiveness.   

Optimal 2nd stage beam design is similar for all frames and all column loss scenarios, with 

beam depth equal to its upper bound, maximum concrete strength, rebar ratios up to 1.03%, and 

stirrup ratio up to 0.50%. By addressing a Dynamic Amplification Factor (DAF) of 1.22 

(common value between CAA and CA in pseudo-static pushdown curves), load combination 

for extraordinary loading condition 𝑞𝐶𝐿 = 1.25(1.2𝐷𝑛 + 0.5𝐿𝑛) leads to roughly 64 kN/m over 

the beam spans (𝐷𝑛 = 3kN/m² and 𝐿𝑛 = 2kN/m²). Overall DCR factors related to ultimate beam 

capacity are ~0.9, indicating a rebar rupture safety margin of ~10% for all frames for all column 

loss scenarios. Since DCR relates to a material property, no strength reduction factor 𝜙 is used. 

Overall increase in optimal bending capacity is around 2.2 for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ , whilst for shear 

capacity it is 1.8. Although lower frames have a smaller damaged area in case of upward 

collapse propagation due to beam failure, weaker beams are never shown to be justified, in 

contrast with Beck et al. [1]. In the mentioned study, a progressive collapse capacity model that 

neglects the bending moments over adjacent columns shows that stronger beams are only cost-

effective for taller frames, where the upward collapse propagation is as severe as horizontal 

column collapse propagation.  
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However, realistic capacity models reveal that significant axial forces developed during 

Catenary and Vierendeel Actions have major impacts over adjacent columns. Besides weak 

beams having lower ultimate capacity, Vierendeel and Catenary Action develop earlier, leading 

to larger bending moment demands over the adjacent columns.  

These additional flexural demands increase the propensity of column rebar yielding. In case 

of tensile column rebar yielding, full achievement of beam ultimate capacity is severely 

compromised, while compressive column rebar yielding also leads to a brittle and sudden 

column collapse. This justifies the risk-based algorithm’s preference for stronger beams 

independently of the frame configuration or column loss scenario. 

4 CONCLUSIONS 

- Cost-effectiveness of progressive collapse mitigation strategies is found to strongly 

depend on threat probabilities for all frames and column loss scenarios. 

- A transition in optimal solutions was observed, with optimal cross-sections changing 

from a configuration with best performance under normal loading condition to another 

with best performance against progressive collapse, characterizing the threshold local 

damage probability 𝑃𝐿𝐷
𝑡ℎ . 

- When the abnormal load and threat are such that 𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ , APM design for load 

bridging is not cost-effective. By contrast, APM design pays off under significant 

threat probabilities, with strengthening costs being compensated by a reduction in 

expected costs of failure. 

- Under prevalence of usual loading condition, the risk-based framework leads to a good 

balance between safety and construction cost, allocating material to provide just-

enough safety against the most critical failure modes, namely bending at the beam ends 

and column failure. 

- Increased ultimate capacity is ensured for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ, with rebar and stirrup 

reinforcements of larger ratios, and concrete strength up to its upper bound.  

- Weaker columns result in optimal APM beam designs with greater depth. 

- As it is not cost-effective to ensure greater column capacity in 2nd stage, ultimate frame 

capacity solely relies on increasing the beam depth in order to avoid magnified bending 

moments over the vertical elements. 

- Beck et al. [1] show optimal APM designs characterized by weaker beams for lower 

frames and stronger beams for taller frames. Yet, this is solely related to the estimated 

consequences from an upward progression of collapse due to beam failures. When 

addressing the entire system behavior, weaker beams are never shown to be justified. 
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